里面介绍了锂电池保护目前采用的几种方式,以及哪种为最优
上传时间: 2017-09-20
上传用户:13936645273
遗传算法已经成为组合优化问题的近似最优解的一把钥匙。它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。 背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其计算复杂度为,传统上采用动态规划来求解。设w是经营活动 i 所需要的资源消耗,M是所能提供的资源总量,p是人们经营活动i得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。
上传时间: 2018-04-26
上传用户:jiazhe110125
IET出版的最优雷达信号处理相关电子书,适合有一定基础的同行。
标签: Processors Optimised Radar
上传时间: 2018-05-08
上传用户:icae0327
K-Means算法是最古老也是应用最广泛的聚类算法,它使用质心定义原型,质心是一组点的均值,通常该算法用于n维连续空间中的对象。 K-Means算法流程 step1:选择K个点作为初始质心 step2:repeat 将每个点指派到最近的质心,形成K个簇 重新计算每个簇的质心 until 质心不在变化 例如下图的样本集,初始选择是三个质心比较集中,但是迭代3次之后,质心趋于稳定,并将样本集分为3部分 我们对每一个步骤都进行分析 step1:选择K个点作为初始质心 这一步首先要知道K的值,也就是说K是手动设置的,而不是像EM算法那样自动聚类成n个簇 其次,如何选择初始质心 最简单的方式无异于,随机选取质心了,然后多次运行,取效果最好的那个结果。这个方法,简单但不见得有效,有很大的可能是得到局部最优。 另一种复杂的方式是,随机选取一个质心,然后计算离这个质心最远的样本点,对于每个后继质心都选取已经选取过的质心的最远点。使用这种方式,可以确保质心是随机的,并且是散开的。 step2:repeat 将每个点指派到最近的质心,形成K个簇 重新计算每个簇的质心 until 质心不在变化 如何定义最近的概念,对于欧式空间中的点,可以使用欧式空间,对于文档可以用余弦相似性等等。对于给定的数据,可能适应与多种合适的邻近性度量。
上传时间: 2018-11-27
上传用户:1159474180
粒子群标准算法。迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。
上传时间: 2019-03-26
上传用户:威震天牛逼
理想解排序法和秩和比法,通过计算每个方案到理想方案的相对贴近度,来对方案进行排序,从而选出最优方案
标签: 排序
上传时间: 2019-05-18
上传用户:781931647
三角算子系统的输出反馈基触发滑动反控制.多状态估计
标签: 控制
上传时间: 2019-07-24
上传用户:sjjy0220
Optimal Guaranteed Cost Sliding-Mode Control of Interval Type-2 Fuzzy Time-Delay Systems
上传时间: 2019-07-24
上传用户:sjjy0220
遗传算法就是在一定的自变量有限的取值范围内,随机取若干个个体,每个个体相当于自变量范围内的一个取值,若干个个体共同组成一个种群,个体对于环境的适应能力体现为该个体对应的因变量,不同的个体得到的结果不同,对于结果较好的个体,其下一代在种群中的占比更高,对于结果不好的个体,其下一代在种群中的占比会更少,简单来说,就是好的个体被保留,坏的个体被淘汰。经过不断的更新换代,最后结果会不断逼近最优的结果。
上传时间: 2019-09-17
上传用户:zxchen
在微电网调度过程中综合考虑经济、环境、蓄电池的 循环电量,建立多目标优化数学模型。针对传统多目标粒子 群算法(multi-objective particle swarm optimization,MOPSO) 的不足,提出引入模糊聚类分析的多目标粒子群算法 (multi-objective particle swarm optimization algorithm based on fuzzy clustering,FCMOPSO),在迭代过程中引入模糊聚 类分析来寻找每代的集群最优解。与 MOPSO 相比, FCMOPSO 增强了算法的稳定性与全局搜索能力,同时使优 化结果中 Pareto 前沿分布更均匀。在求得 Pareto 最优解集 后,再根据各目标的重要程度,用模糊模型识别从最优解集 中找出不同情况下的最优方案。最后以一欧洲典型微电网为 例,验证算法的有效性和可行性。
上传时间: 2019-11-11
上传用户:Dr.赵劲帅