虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

微分几何

  • 6位Flash型超高速ADC的设计

    作为模拟与数字电路的接口电路的关键部分,模数转换器(ADC)现代通信、需达、卢纳以及众多消费电子产品中都占据极其重要的地位。随着科技的迅猛发展,对模数转换器的性能,特别是速度上的要求越来越高,ADC的性能好坏甚至已经成为决定设备性能的关键因素。本文以超高速ADC作为设计的目标,采用了Flash型结构作为研究的方向,并且从ADC的速度和失调电压消除技术入手进行了重点研究。本文采用了种新颖的消除失调电压的技术-chopping技术,该技术主要是依靠 组随机数产生器所产生的高速随机数序列来随机快速置换比较器输入端,从而使得失调电压近似平均为零,本文设计了种高速随机数产生器,可以产生速率达到1GHz的随机数序列。由于比较器部分是影响整个ADC速度的关键因素,因此在设计中对于比较器部分逃行了重点优化设计。另外还在数字编码电路中加入了纠错设计。通过电路仿真,所设计的ADC可达到1GHz的采样速率,最大积分非线性和微分非线性分别为0.42LSB和0.49LSB,当输入信号频率为16.6MHz时,无杂波动态范围(SFDR)达到41dB,当加入50mV失调电压时,chopping技术可以将SFDR增加3dB左右。本设计采用了和舰0.18um CMOS混合信号工艺,完成了主要模块版图的设计工作。关键词 Flash型 ADC;失调电压消除技术:chopping技术

    标签: flash adc

    上传时间: 2022-06-19

    上传用户:d1997wayne

  • 高级数值仿真软件 COMSOL Multiphysics 操作手册丛书 函数定义用户指南

    COMSOL Multiphysics是一款大型的高级数值仿真软件,由瑞典的COMSOL公司开发,广泛应用于各个领域的科学研究以及工程计算,被当今世界科学家誉为“第一款真正的任意多物理场直接耦合分析软件”,适用于模拟科学和工程领域的各种物理过程。作为一款大型的高级数值仿真软件,COMSOL Multiphysics以有限元法为基础,通过求解偏微分方程(单场)或偏微分方程组(多场)来实现真实物理现象的仿真。COMSOL Mutiphysics以高效的计算性能和杰出的多场直接耦合分析能力实现了任意多物理场的高度精确的数值仿真,在全球领先的数值仿真领域里广泛应用于声学、生物科学、化学反应、电磁学、流体动力学、燃料电池、地球科学、热传导、微系统、微波工程、光学、光子学、多孔介质、量子力学、射频、半导体、结构力学、传动现象、波的传播等领域得到了广泛的应用。在全球各著名高校,COMSOL Multiphysics已经成为讲授有限元方法以及多物理场耦合分析的标准工具;在全球500强企业中,COMSOL Multiphysics被视作提升核心竞争力,增强创新能力,加速研发的重要工具。COMSOLMultiphysics多次被NASA技术杂志选为“本年度最佳上榜产品”,NASA技术杂志主编点评到,“当选为NASA科学家所选出的年度最佳CAE产品的优胜者,表明COMSOL Multiphysics是对工程领域最有价值和意义的产品"。

    标签: 高级数值仿真软件 COMSOL Multiphysics

    上传时间: 2022-06-19

    上传用户:

  • COMSOl Multiphysics图形操作界面使用手册

    第一节主界面说明1-1主界面M ain Interface图形操作界面是建模的最简单方法之一,当我们在模型浏览器(M odelNavigator)中设定好应用模式以后,会自动弹出图形操作界面。下图表示2D应用模式的图形操作界面:第二节文件莱单File$2-1新建New新建:开启模型浏览器,建立新模型52-2打开模型库O pen M odelL.brary打开模型库:打开模型库中已存在的例子$24打开open打开:载入已经建好的模型$25保存Save保存:储存模型$26另存为SaveAs另存为:在另一个路径下储存模型$2-7 打印Print打印:打印模型28生成报告Generate Report生成报告:生成一个能详细说明模型的应用模式、几何属性、材料和边界设置等的报告文件。其中,在Format中设定生:成报告的格式、存放的路径;在Contents中选择报告包含哪些部分.

    标签: COMSOl Multiphysics

    上传时间: 2022-06-20

    上传用户:

  • CMOS集成电路版图TannerL-Edit设计入门

    Tanner版图流程举例(反相器)集成电路设计近年来发展相当迅速,许多设计需要借助计算机辅助设计软件。作为将来从事集成电路设计的工作人员,至少需要对版图有所了解,但是许多软件(如cadence)实在工作站上执行的,不利于初学者。L-Edit软件是基于PC上的设计工具,简单易学,操作方便,通过学习,掌握版图的设计流程。Tanner Pro简介:Tanner Pro是一套集成电路设计软件,包括S-EDIT,T-SPICE,W-EDIT,L-EDIT,与LVS,他们的主要功能分别如下:1、S-Edit:编辑电路图2,T-Spice:电路分析与模拟3,W-Edit:显示T-Spice模拟结果4,L-Edit:编辑布局图、自动配置与绕线、设计规则检查、截面观察、电路转化5、LVS:电路图与布局结果对比设计规则的作用设计规则规定了生产中可以接受的几何尺寸的要求和达到的电学性能。对设计和制造双方来说,设计规则既是工艺加工应该达到的规范,也是设计必循遵循的原则设计规则表示了成品率和性能的最佳折衷

    标签: cmos

    上传时间: 2022-06-21

    上传用户:

  • PID通俗教程

    首先帮大家解决一下什么是 PID 调节,为什么就要这样的疑惑。 PID 是比例,积分,微分的英文单词的首字母的简称。 下面举个例子说明一下 PID,让大家有个感官的认识,。…………

    标签: pid控制

    上传时间: 2022-06-22

    上传用户:

  • OP 放大电路设计

    本书是“实用电子电路设计丛书”之一。本书内容分基础部分(1~5章)和应用部分(6~9章)。前者主要介绍OP放大器的零点、漂移及噪声,增益与桶位,相位补偿及技马,OP放大器的选择和系统设计;后者则主要介绍OP放大器作为反相放大器、正相放大器、差动放大器的应用,OP放大嚣在恒压、恒流电路和微分、积分电路中的应用以及基于非线性元件的应用,比较放大器中的应用,等等.本书面向实际需要,理论联系实际,列举大量实用性、技术性强的电路,使读者从原理到应用,对OP放大器有个系统的了解,以便能够应付电路中可能出现的更加复杂的情况和故障。本书适用对象是相关领域工程技术人员以及大学相关专业本科生、研究生;也可供广大的爱好者学习参考。

    标签: op 放大电路

    上传时间: 2022-06-23

    上传用户:

  • 分数阶微积分的若干理论及应用

    在1974年以后,分数阶微积分有了飞速的发展.它与分数阶微分方程四无论从理论上还是应用上都发展迅速,应用领域越来越广,并且有了许多有关的专著以及论文集,并开始呈现出全面地推广到常微分方程[2.1甚至泛函微分方程的层而上分数阶理论.在分数阶微积分理论的研究过程中,其优势主要体现在:1.分数阶导数的全局相关性很好的解决了具有局部性的整数阶导数不能够很好地描述出系统函数发展的历史依赖过程的问题;2.分数阶导数仅仅是用很少的几个参数就能获得好的效果,克服了经典的整数阶微分模型不能很好地与实验结果相吻合这个严重缺点;3.分数阶模型在描述复杂的物理学问题时,比起非线性模型,其物理意义更清晰且表达更简练.

    标签: 分数阶微积分

    上传时间: 2022-06-25

    上传用户:aben

  • 时域光学分数阶傅立叶变换在光通信中的应用研究

    傅立叶变换在科学与工程技术几乎所有的领域里具有广泛的应用,但随着研究范围的不断发展,也逐渐暴露出傅立叶变换在处理某些问题时的局限性,体现在,它是一种全局性的变换,得到的是信号的整体频谱,因而无法表述出信号的时频局部信息,而这些特性正是非平稳信号的最根本也是最关键的性质,为了分析和处理这类信号,分数阶傅立叶变换应运而生。目前,分数阶傅立叶变换已被应用在解微分方程、量子力学、衍射理论和光学传输、光学系统和光信号处理、光图像处理等许多方向。论文首先介绍了分数阶傅立叶变换的定义以及性质。接着简要介绍了分数阶傅立叶变换在不同领域的应用。将分数阶傅立叶变换的定义式分成三部分,推导出具体的实现方案,在时空二元性理论的基础上,首先得到空间上的光学分数阶傅立叶变换的实现,也即采用两个透镜中间隔开一定空间距离的方案。进而类比空间上的这种模型,给出时间上光学分数阶傅立叶变换的实现方式。基于推导出的分数阶傅立叶变换的实现,应用到光脉冲在光纤中的传输上,我们研究了各种因素对脉冲传输过程中展宽压缩分裂等现象的影响,分别为不同预啾系数时光脉冲在传输过程中的展宽快慢、不同阶次的分数阶傅立叶变换后的传输性能、不同脉冲宽度的传输性能、不同脉冲光功率下的传输性能。并最终对这些不同因素对传输性能的影响进行了分析、总结与展望。

    标签: 傅立叶变换 光通信

    上传时间: 2022-06-25

    上传用户:

  • 几何光学与物理光学

    这是工程光学第三部,郁道银主编的书,是浙大的上课ppt文件

    标签: 几何光学

    上传时间: 2022-06-29

    上传用户:

  • PID算法及PWM控制技术简介

    PID算法及PWM控制技术简介1.1PID算法控制算法是微机化控制系统的一个重要组成部分,整个系统的控制功能主要由控制算法来实现。目前提出的控制算法有很多。根据偏差的比例(P)、积分(ID,微分(D)进行的控制,称为PID控制。实际经验和理论分析都表明,PID控制能够满足相当多工业对象的控制要求,至今仍是一种应用最为广泛的控制算法之一。下面分别介绍模拟PID、数字PID及其参数整定方法。1.1.1模拟PID在模拟控制系统中,调节器最常用的控制规律是PID控制,常规PID控制系统原理框图如图1.1所示,系统由模拟PID调节器、执行机构及控制对象组成。PID调节器是一种线性调节器,它根据给定值r(1)与实际输出值c(1)构成的控制偏差:e()=r(t)-c(t)(1.1)将偏差的比例、积分、微分通过线性组合构成控制量,对控制对象进行控制,故称为PID调节器。在实际应用中,常根据对象的特征和控制要求,将P、I、D基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。例如,P调节器,PI调节器,PID调节器等。模拟PID调节器的控制规律为

    标签: pid算法 pwm

    上传时间: 2022-07-01

    上传用户: