虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

交流<b>伺服控</b>制

  • PLC与变频调速伺服控制系统

    该文档为PLC与变频调速伺服控制系统总结文档,是一份很不错的参考资料,具有较高参考价值,感兴趣的可以下载看看………………

    标签: plc

    上传时间: 2022-04-30

    上传用户:

  • 东元伺服TSDA-20B伺服说明书

    东元伺服是台湾品牌,主要用在一些机床上以及纺织机械,口罩机等等

    标签: 伺服

    上传时间: 2022-05-15

    上传用户:kent

  • 东元TSDA伺服手册

    安装塌所1、通凰良好少温策及灰座之塌所。2、杂腐蚀性、引火性氛髓、油急、切削液、切前粉、戴粉等聚境。3、杂振勤的场所。4、杂水氟及踢光直射的场所。1、本距勤器探用自然封流冷御方式正随安装方向局垂直站立方式2、在配電箱中需考感温升情况未连有效散熟及冷御效果需保留足豹的空固以取得充分的空氟。3、如想要使控制箱内温度连到一致需增加凰扇等散热毅倩。4、组装睛廊注意避免赞孔屑及其他翼物掉落距勤器内。5、安装睛请硫资以M5螺练固定。6、附近有振勤源时请使用振勤吸收器防振橡腥来作腐噩勤器的防振支撑。7、勤器附近有大型磁性阴嗣、熔接楼等雄部干援源睛,容易使距勤器受外界干摄造成误勤作,此时需加装雄部滤波器。但雍讯滤波器舍增加波漏電流,因此需在愿勤器的输入端装上经缘羹愿器(Transformer)。*配象材料依照使用電象规格]使用。*配象的丧度:指令输入象3公尺以内。编码器输入综20公尺以内。配象时请以最短距薄速接。*硫赏依照操单接象圈配象,未使用到的信貌请勿接出。*局连输出端(端子U、V、W)要正硫的速接。否则伺服焉速勤作舍不正常。*隔雄综必须速接在FG端子上。*接地请以使用第3砸接地(接地電阻值腐100Ω以下),而且必须罩黏接地。若希望易速舆械之周腐纪缘状惩畸,请将连接地。*伺服距勤器的输出端不要加装電容器,或遇(突波)吸收器及雅讯滤波器。*装在控制输出信號的DC继電器,其遏(突波)吸收用的二梗溜的方向要速接正硫,否则食造成故障,因而杂法输出信犹,也可能影馨紧急停止的保渡迎路不座生作用。*腐了防止雍部造成的错溪勤作,请探下列的威置:请在電源上加入经缘雯愿器及雅乱滤波器等装置。请将勤力缘(雷源象、焉连缘等的蕴雷回路)奥信蔬缘相距30公分以上来配练,不要放置在同一配缘管内。

    标签: tsda

    上传时间: 2022-05-28

    上传用户:zhanglei193

  • Sigmawin+软件-伺服操作说明

    1运行sigmawin+1.1选择伺服驱动器sigmawin+软件开始运行时,会看到选择连接的对话框,根据实际使用的通信端口来选择伺服驱动器和PC的连接。选择连接伺服驱动器的方式:在线或离线状态,在线状态是默认设置在线方式:当要对伺服驱动器进行调谐和设置时需要使用在线方式离线方式:当要对参数进行调整以及检查屏幕显示和机械分析时使用离线方式当采用离线方式时选择相应系列的伺服,之后会出现sigmawin+软件的主窗口当选择在现方式时之后进行必要的通信端口的选择点击search按钮,搜索当先连接的端口,注:2-V为USB端口点击search按钮,当驱动器和PC成功连接后会出现如下对话框点击出现的相应型号的伺服驱动器然后按connect按钮或者直接双击伺服驱动器来进行连接,sigmawin+软件的主窗口就会出现,点击cancel关闭当前对话框。Sigmawin+连接2-V后出现主窗口所有的应用功能都可以通过菜单栏或工具栏上面使用1.2工具栏直接点击工具栏上的图标就可以使用相应的功能1.3参数设定伺服驱动器的参数可以在离线模式和在线模式下进行设置,但是这两种状态下的参数设置画面是不同的。1.4参数的转换在sigmawin+软件主窗口中,点击parameters然后点击parameter converter选择需要转换的参数文件,即其他系列的伺服驱动器,点击open选中的文件将被导入,源文件对应的驱动器的型号会显示在conversion source中。转换后对应的驱动器型号也会在conversion destination中自动设置。注:如果选择了不能转换的文件,会出现以下对话框提示你选择了不能转换的文件。点击convert已选择的之前系列的驱动器参数文件将被转换成和2-V系列驱动器相一致的参数数据,而且会保存在新建的参数文件中。转换完成后,转换结果会显示在参数转换窗口中。如下:

    标签: sigmawin

    上传时间: 2022-05-31

    上传用户:

  • EtherCAT网络及其伺服运动控制系统研究

    随着微电子技术和电力电子技术的发展,伺服运动控制系统已经从模拟控制发展到全数字控制,其性能不断提高,在工业机器人、数控机床等设备中获得了广泛应用.基于现场总线网络的伺服运动控制系统以其高可靠性、快速性和稳定性成为伺服运动控制系统的发展趋势。德国倍福公司提出的EtherCAT工业以太网技术在数据链路层采用了实时调度的软件核,并提供了过程数据传输的独立通道,提高了系统的实时性:该网络还具有灵活的拓扑结构,简单的系统配置,较低的构建成本等特点,适合应用于运动控制领域。目前,该网络受到了运动控制开发商的广泛关注。本文以海洋研究领域的造波机系统开发为背景,利用EtherCAT从站接口控制器ET1100和DSP芯片TMS320F28335开发了EtherCAT从站设备,构建了一主一从的EtherCAT网络结构实现了伺服系统精确的位置控制。论文首先对伺服运动控制系统的概念、特点进行了介绍,对其各个组成部分进行了详细分析,并结合实践经验给出了自己的观点,就目前广泛应用于网络运动控制中的两种总线网络进行了介绍。其次,详细分析了EtherCAT网络的原理、技术特点及主从站关键技术。结合本文的系统设计,介绍了1公司最新推出的用于1业控制的DSP片-TMS320F28335,分析了系统设计中用到的几个运动控制模块与通讯模块,并给出了相应寄存器配置。最后在对EtherCAT网络和DSP芯片TMS320F28335研究基础上,开发了EtherCAT从站设备,避免了造波机系统中脉冲+方向位置控制方式长线传输的缺点,给出了开发系统的总体框架及主从站实现的关键细节,并给出了相应的实验结论。本设计充分发挥了EtherCAT工业以太网络实时数据传输的功能和TMS320F28335 DSP芯片运动控制功能,实现了运动系统高精度的位置控制。

    标签: ethercat 伺服运动控制系统

    上传时间: 2022-06-01

    上传用户:aben

  • 伺服系统调试心得体

    (一)电机问题(1) 电动机窜动:在进给时出现窜动现象,测速信号不稳定,如编码器有裂纹;接线端子接触不良,如螺钉松动等;当窜动发生在由正方向运动与反方向运动的换向瞬间时,一般是由于进给传动链的反向问隙或伺服驱动增益过大所致;(2) 电动机爬行: 大多发生在起动加速段或低速进给时, 一般是由于进给传动链的润滑状态不良,伺服系统增益低及外加负载过大等因素所致。尤其要注意的是,伺服电动机和滚珠丝杠联接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠与伺服电动机的转动不同步,从而使进给运动忽快忽慢;(3) 电动机振动:机床高速运行时,可能产生振动,这时就会产生过流报警。机床振动问题一般属于速度问题,所以应寻找速度环问题;(4) 电动机转矩降低: 伺服电动机从额定堵转转矩到高速运转时, 发现转矩会突然降低,这时因为电动机绕组的散热损坏和机械部分发热引起的。高速时,电动机温升变大,因此,正确使用伺服电动机前一定要对电动机的负载进行验算;(5) 电动机位置误差:当伺服轴运动超过位置允差范围时(KNDSD100 出厂标准设置PA17 :400 ,位置超差检测范围),伺服驱动器就会出现“ 4”号位置超差报警。主要原因有:系统设定的允差范围小;伺服系统增益设置不当;位置检测装置有污染;进给传动链累计误差过大等;(6) 电动机不转:数控系统到伺服驱动器除了联结脉冲+ 方向信号外,还有使能控制信号,一般为DC+24 V 继电器线圈电压。伺服电动机不转,常用诊断方法有:检查数控系统是否有脉冲信号输出;检查使能信号是否接通;通过液晶屏观测系统输入/ 出状态是否满足进给轴的起动条件;对带电磁制动器的伺服电动机确认制动已经打开;驱动器有故障;伺服电动机有故障;伺服电动机和滚珠丝杠联结联轴节失效或键脱开等。

    标签: 伺服系统

    上传时间: 2022-06-01

    上传用户:

  • TI F28069伺服电机控制工程,完整的控制程序

        使用28069进行的伺服电机控制程序,包含增减速,编码器模块,FOC控制等

    标签: f28069 伺服电机控制

    上传时间: 2022-06-20

    上传用户:

  • 三洋R系列伺服驱动器使用手册

    三洋伺服驱动器使用手册,详细介绍啦伺服驱动器的各项功能

    标签: 伺服驱动器

    上传时间: 2022-06-26

    上传用户:

  • 伺服电机原理动画演示

    伺服电机原理动画演示伺服电机原理

    标签: 伺服电机

    上传时间: 2022-06-29

    上传用户:

  • PLC的工业机器人关节直流伺服系统

    文档为PLC的工业机器人关节直流伺服系统总结文档,是一份不错的参考资料,感兴趣的可以下载看看,,,,,,,,,,,,,,

    标签: plc

    上传时间: 2022-07-03

    上传用户:kingwide