Linear Technology offers some of the highest performance RF and signal chain solutions for wireless and cellularinfrastructure. These products support worldwide standards including, LTE, WiMAX, GSM,W-CDMA, TD-SCDMA,CDMA, and CDMA2000. Other wireless systems include broadband microwave data links, secure communications,satellite receivers, broadband wireless access, wireless broadcast systems, RFID readers and cable infrastructure
上传时间: 2013-11-04
上传用户:kiklkook
通信物理层仿真,有代码,包括BPSK,QPSK,MSK,GMSK,扩频等等,Artech.House_2002_Simulation.and.Software.Radio.for.Mobile.Communications。
标签: Communications Simulation Software Artech
上传时间: 2013-11-01
上传用户:jhksyghr
Abstract: Engineers often wish that radio susceptibility (RS) or radio immunity could be cured with an antibiotic, a vaccine, or someform of cure-all. Unfortunately, solving the RS problem is not that easy. Indeed, the laws of physics apply. In this article we discusssources of RS. We also offer tips and hints to protect systems, power supplies, printed circuit boards (PCBs), and electroniccomponents from radio frequency interference.
标签: Susceptibility Radio 无线电干扰
上传时间: 2014-12-30
上传用户:旗鱼旗鱼
同步技术是跳频通信系统的关键技术之一,尤其是在快速跳频通信系统中,常规跳频通信通过同步字头携带相关码的方法来实现同步,但对于快跳频来说,由于是一跳或者多跳传输一个调制符号,难以携带相关码。对此引入双跳频图案方法,提出了一种适用于快速跳频通信系统的同步方案。采用短码携带同步信息,克服了快速跳频难以携带相关码的困难。分析了同步性能,仿真结果表明该方案同步时间短、虚警概率低、捕获概率高,同步性能可靠。 Abstract: Synchronization is one of the key techniques to frequency-hopping communication system, especially in the fast frequency hopping communication system. In conventional frequency hopping communication systems, synchronization can be achieved by synchronization-head which can be used to carry the synchronization information, but for the fast frequency hopping, Because modulation symbol is transmitted by per hop or multi-hop, it is difficult to carry the correlation code. For the limitation of fast frequency hopping in carrying correlation code, a fast frequency-hopping synchronization scheme with two hopping patterns is proposed. The synchronization information is carried by short code, which overcomes the difficulty of correlation code transmission in fast frequency-hopping. The performance of the scheme is analyzed, and simulation results show that the scheme has the advantages of shorter synchronization time, lower probability of false alarm, higher probability of capture and more reliable of synchronization.
上传时间: 2013-11-23
上传用户:mpquest
Single-Ended and Differential S-Parameters Differential circuits have been important incommunication systems for many years. In the past,differential communication circuits operated at lowfrequencies, where they could be designed andanalyzed using lumped-element models andtechniques. With the frequency of operationincreasing beyond 1GHz, and above 1Gbps fordigital communications, this lumped-elementapproach is no longer valid, because the physicalsize of the circuit approaches the size of awavelength.Distributed models and analysis techniques are nowused instead of lumped-element techniques.Scattering parameters, or S-parameters, have beendeveloped for this purpose [1]. These S-parametersare defined for single-ended networks. S-parameterscan be used to describe differential networks, but astrict definition was not developed until Bockelmanand others addressed this issue [2]. Bockelman’swork also included a study on how to adapt single-ended S-parameters for use with differential circuits[2]. This adaptation, called “mixed-mode S-parameters,” addresses differential and common-mode operation, as well as the conversion betweenthe two modes of operation.This application note will explain the use of single-ended and mixed-mode S-parameters, and the basicconcepts of microwave measurement calibration.
上传时间: 2014-03-25
上传用户:yyyyyyyyyy
Agilent AN 154 S-Parameter Design Application Note S参数的设计与应用 The need for new high-frequency, solid-state circuitdesign techniques has been recognized both by microwaveengineers and circuit designers. These engineersare being asked to design solid state circuitsthat will operate at higher and higher frequencies.The development of microwave transistors andAgilent Technologies’ network analysis instrumentationsystems that permit complete network characterizationin the microwave frequency rangehave greatly assisted these engineers in their work.The Agilent Microwave Division’s lab staff hasdeveloped a high frequency circuit design seminarto assist their counterparts in R&D labs throughoutthe world. This seminar has been presentedin a number of locations in the United States andEurope.From the experience gained in presenting this originalseminar, we have developed a four-part videotape, S-Parameter Design Seminar. While the technologyof high frequency circuit design is everchanging, the concepts upon which this technologyhas been built are relatively invariant.The content of the S-Parameter Design Seminar isas follows:
标签: S参数
上传时间: 2013-12-19
上传用户:aa54
Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this document are attributed to Cadence with the appropriate symbol.
上传时间: 2014-12-31
上传用户:hustfanenze
Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in
标签: Allegro-Design-Editor-Tutorial_ad e_tut
上传时间: 2013-11-11
上传用户:yulg
中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications. The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation. Some of the UltraScale architecture breakthroughs include: • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50% • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets • Greatly enhanced DSP and packet handling The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
标签: UltraScale Xilinx 架构
上传时间: 2013-11-21
上传用户:wxqman
Abstract: Using a wafer-level package (WLP) can reduce the overall size and cost of your solution.However when using a WLP IC, the printed circuit board (PCB) layout can become more complex and, ifnot carefully planned, result in an unreliable design. This article presents some PCB designconsiderations and general recommendations for choosing a 0.4mm- or 0.5mm-pitch WLP for yourapplication.
标签: Considerations Guidelines and Design
上传时间: 2013-11-09
上传用户:ls530720646