虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

最优<b>制导</b>

  • matlab 0-1背包问题

    遗传算法已经成为组合优化问题的近似最优解的一把钥匙。它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。 背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其计算复杂度为,传统上采用动态规划来求解。设w是经营活动 i 所需要的资源消耗,M是所能提供的资源总量,p是人们经营活动i得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。

    标签: matlab 背包问题

    上传时间: 2018-04-26

    上传用户:jiazhe110125

  • Optimised Radar Processors

    IET出版的最优雷达信号处理相关电子书,适合有一定基础的同行。

    标签: Processors Optimised Radar

    上传时间: 2018-05-08

    上传用户:icae0327

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    标签: 道理特分解法

    上传时间: 2018-05-20

    上传用户:Aa123456789

  • 数据挖掘-聚类-K-means算法Java实现

    K-Means算法是最古老也是应用最广泛的聚类算法,它使用质心定义原型,质心是一组点的均值,通常该算法用于n维连续空间中的对象。 K-Means算法流程 step1:选择K个点作为初始质心 step2:repeat                将每个点指派到最近的质心,形成K个簇                重新计算每个簇的质心             until 质心不在变化  例如下图的样本集,初始选择是三个质心比较集中,但是迭代3次之后,质心趋于稳定,并将样本集分为3部分    我们对每一个步骤都进行分析 step1:选择K个点作为初始质心 这一步首先要知道K的值,也就是说K是手动设置的,而不是像EM算法那样自动聚类成n个簇 其次,如何选择初始质心      最简单的方式无异于,随机选取质心了,然后多次运行,取效果最好的那个结果。这个方法,简单但不见得有效,有很大的可能是得到局部最优。      另一种复杂的方式是,随机选取一个质心,然后计算离这个质心最远的样本点,对于每个后继质心都选取已经选取过的质心的最远点。使用这种方式,可以确保质心是随机的,并且是散开的。 step2:repeat                将每个点指派到最近的质心,形成K个簇                重新计算每个簇的质心             until 质心不在变化  如何定义最近的概念,对于欧式空间中的点,可以使用欧式空间,对于文档可以用余弦相似性等等。对于给定的数据,可能适应与多种合适的邻近性度量。

    标签: K-means Java 数据挖掘 聚类 算法

    上传时间: 2018-11-27

    上传用户:1159474180

  • pso粒子群算法

    粒子群标准算法。迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

    标签: pso 粒子群算法

    上传时间: 2019-03-26

    上传用户:威震天牛逼

  • 理想解排序法和秩和比法

    理想解排序法和秩和比法,通过计算每个方案到理想方案的相对贴近度,来对方案进行排序,从而选出最优方案

    标签: 排序

    上传时间: 2019-05-18

    上传用户:781931647

  • 最优性能滑模控制

    Optimal Guaranteed Cost Sliding-Mode Control of Interval Type-2 Fuzzy Time-Delay Systems

    标签: 性能 滑模控制

    上传时间: 2019-07-24

    上传用户:sjjy0220

  • 机器人路径规划遗传算法

    遗传算法就是在一定的自变量有限的取值范围内,随机取若干个个体,每个个体相当于自变量范围内的一个取值,若干个个体共同组成一个种群,个体对于环境的适应能力体现为该个体对应的因变量,不同的个体得到的结果不同,对于结果较好的个体,其下一代在种群中的占比更高,对于结果不好的个体,其下一代在种群中的占比会更少,简单来说,就是好的个体被保留,坏的个体被淘汰。经过不断的更新换代,最后结果会不断逼近最优的结果。

    标签: 机器人 路径规划 算法

    上传时间: 2019-09-17

    上传用户:zxchen

  • 基于模糊聚类分析与模型识别的微电网多目标优化方法

    在微电网调度过程中综合考虑经济、环境、蓄电池的 循环电量,建立多目标优化数学模型。针对传统多目标粒子 群算法(multi-objective particle swarm optimization,MOPSO) 的不足,提出引入模糊聚类分析的多目标粒子群算法 (multi-objective particle swarm optimization algorithm based on fuzzy clustering,FCMOPSO),在迭代过程中引入模糊聚 类分析来寻找每代的集群最优解。与 MOPSO 相比, FCMOPSO 增强了算法的稳定性与全局搜索能力,同时使优 化结果中 Pareto 前沿分布更均匀。在求得 Pareto 最优解集 后,再根据各目标的重要程度,用模糊模型识别从最优解集 中找出不同情况下的最优方案。最后以一欧洲典型微电网为 例,验证算法的有效性和可行性。

    标签: 模糊 模型识别 微电网 多目标优化 聚类分析

    上传时间: 2019-11-11

    上传用户:Dr.赵劲帅

  • 全国交通咨询模拟C++

    6.全国交通咨询模拟 【问题描述】 出于不同目的的旅客对交通工具有不同的要求。例如,因公出差的旅客希望在旅途中 的时间尽可能短,出门旅游的游客则期望旅费尽可能省,而老年旅客则要求中转次数最少。 编制一个全国城市间的交通咨询程序,为旅客提供两种或三种最优决策的交通咨询。 【基本要求】 (1)提供对城市信息进行编辑(如添加或删除)的功能。 (2)城市之间有两种交通工具:火车和飞机。提供对列车时刻表和飞机航班进行编辑 (增设或删除)的功能。 (3)提供两种最优决策:最快到达或最省钱到达。全程只考虑一种交通工具。 (4)旅途中耗费的总时间应该包括中转站的等候时间。 (5)咨询以用户和计算机的对话方式进行。

    标签: 数据结构

    上传时间: 2019-12-04

    上传用户:啦啦啦啦好好