随着信息产业和集成电路技术的进步,嵌入式应用领域得到了蓬勃和快速的发展。嵌入式应用开发的重要特点是满足应用门类的多样化需求,嵌入式应用的多样化主要体现在目标机硬件平台的多样化,而硬件平台的多样化则对嵌入式系统平台的底层构建提出了严格要求,因此不同硬件平台底层构建研究是嵌入式开发中的一个重要问题。 嵌入式软硬件平台的底层构建主要涉及以下几个部分: 1、嵌入式开发环境构建,涉及交叉编译环境、交叉调试环境等; 2、嵌入式硬件平台构建,涉及硬件平台选型、地址分配等; 3、U.Boot移植,涉及U-Boot启动分析、移植分析等; 4、嵌入式操作系统移植,涉及uClinux内核结构、移植分析等; 5、驱动程序的开发,涉及硬件分析、Linux下驱动分析等; 与此同时,安全防范系统作为现代化的安全警卫手段,近年来正越来越多地进入各个行业的各种应用领域,智能家居已经成为高科技发展必然的趋势。另外,运营商宽带网络缺乏新的利润增长点,在已有的宽带网络上开发新的业务迫在眉睫。基于ARM的家庭安防网关与局端设备相结合,配备无线报警信号自学习型编解码收发模块,完全解决了上述两个问题。 本文以多媒体综合报警系统项目中的终端产品XXX型家庭安防网关为依托,以开发流程为主线,就ARM+uClinux嵌入式平台给出了以上五个嵌入式开发过程中底层平台构建的关键技术解决方案。正文中将依次介绍项目概述、目标硬件平台分析、交叉开发环境构建以及U-Boot的移植、uClinux的移植和具体驱动程序的开发。
上传时间: 2013-05-25
上传用户:李彦东
随着电信数据传输对速率和带宽的要求变得越来越迫切,原有建成的网络是基于话音传输业务的网络,已不能适应当前的需求.而建设新的宽带网络需要相当大的投资且建设工期长,无法满足特定客户对高速数据传输的近期需求.反向复用技术是把一个单一的高速数据流在发送端拆散并放在两个或者多个低速数据链路上进行传输,在接收端再还原为高速数据流.该文提出一种基于FPGA的多路E1反向复用传输芯片的设计方案,使用四个E1构成高速数据的透明传输通道,支持E1线路间最大相对延迟64ms,通过链路容量调整机制,可以动态添加或删除某条E1链路,实现灵活、高效的利用现有网络实现视频、数据等高速数据的传输,能够节省带宽资源,降低成本,满足客户的需求.系统分为发送和接收两部分.发送电路实现四路E1的成帧操作,数据拆分采用线路循环与帧间插相结合的方法,A路插满一帧(30时隙)后,转入B路E1间插数据,依此类推,循环间插所有的数据.接收电路进行HDB3解码,帧同步定位(子帧同步和复帧同步),线路延迟判断,FIFO和SDRAM实现多路数据的对齐,最后按照约定的高速数据流的帧格式输出数据.整个数字电路采用Verilog硬件描述语言设计,通过前仿真和后仿真的验证.以30万门的FPGA器件作为硬件实现,经过综合和布线,特别是写约束和增量布线手动调整电路的布局,降低关键路径延时,最终满足设计要求.
上传时间: 2013-07-16
上传用户:asdkin
在惯性导航系统中,捷联式惯性导航系统以其体积小、成本低和可靠性高等优点正逐步取代平台式惯性导航系统,成为惯性导航系统的发展趋势。 为了适应捷联惯性导航系统小型化、低成本和高性能的发展方向,本文设计了DSP与FPGA相结合的系统方案:系统采用MEMS器件和高性能A/D转换器构成惯性信号检测单元,FPGA进行I/O控制,DSP完成导航计算。方案综合考虑了系统成本、计算速度、精度、体积等各方面的因素,并通过GPS、磁航向计等信息融合进一步提高导航精度。 数据采集是捷联惯导系统设计的关键,本文数据采集由信号调理、A/D转换和。FPGA等几部分组成。其中,FPGA是整个数据采集部分的核心,其主要功能包括:实现了ADC控制逻辑和时序生成;配置了FIFO寄存器,缓冲了ADC与DSP之间的转换数据;扩展了UART串口,以实现系统的外部信息接口。在完成电路设计的基础上,对各功能模块进行了全面的半实物仿真,验证了系统方案及各主要功能模块的可行性。 论文简述了惯性导航系统的应用背景及发展状况,介绍了捷联惯导系统的基本原理,设计了基于DSP/FPGA的捷联惯导系统方案,实现了系统各部分硬件电路以及FPGA功能模块,并通过搭建硬件验证平台和利用第三方仿真软件,对传感器的性能以及FPGA各功能模块进行了较全面的验证和仿真。结果表明:基于DSP/FPGA的捷联惯导系统能够满足应用的要求,并在小型化、低成本和高性能等方面有一定的优势。
上传时间: 2013-04-24
上传用户:1966640071
1) 全数字化设计,交流采样,人机界面采用大屏幕点阵图形128X64 LCD中文液晶显示器。 2) 可实时显示A、B、C各相功率因数、电压、电流、有功功率、无功功率、电压总谐波畸变率、电流总谐波畸变率、电压3、5、7、9、11、13次谐波畸变率、电流3、5、7、9、 11、13次谐波畸变率频率、频率、电容输出显示及投切状态、报警等信息。 3) 设置参数中文提示,数字输入。 4) 电容器控制方案支持三相补偿、分相补偿、混合补偿方案,可通过菜单操作进行设置。 5) 电容器投切控制程序支持等容/编码(1:2、 1:2:3、 1:2:4:8…)等投切方式。 6) 具有手动补偿/自动补偿两种工作方式。 7) 提供电平控制输出接口(+12V),动态响应优于20MS。 8) 取样物理量为无功功率,具有谐波测量及保护功能。 9) 控制器具有RS-485通讯接口,MODBUS标准现场总线协议,方便接入低压配电系统。
上传时间: 2013-11-09
上传用户:dancnc
分析了调幅信号和载波信号之间的相位差与调制信号的极性的对应关系,得出了相敏检波电路输出电压的极性与调制信号的极性有对应关系的结论。为了验证相敏检波电路的这一特性,给出3 个电路方案,分别选用理想元件和实际元件,采用Multisim 对其进行仿真实验,直观形象地演示了相敏检波电路的鉴相特性,是传统的实际操作实验所不可比拟的。关键词:相敏检波;鉴相特性;Multisim;电路仿真 Abstract : The corresponding relation between modulation signal polarity and difference phases of amplitudemodulated signal and the carrier signal ,the polarity of phase2sensitive detecting circuit output voltage and the polarity of modulation signal are correspondent . In order to verify this characteristic ,three elect ric circuit s plans are produced ,idea element s and actual element s are selected respectively. Using Multisim to carry on a simulation experiment ,and then demonst rating the phase detecting characteristic of the phase sensitive circuit vividly and directly. Which is t raditional practical experience cannot be com pared.Keywords :phase sensitive detection ;phase2detecting characteristic ;Multisim;circuit simulation
上传时间: 2013-11-23
上传用户:guanhuihong
在静电传感器测量气/固两相流参数的基础上,以J.B.Gajewski教授的成果为基础,对电容的计算进行了研究。将静电传感器电极与屏蔽罩间的电容cp看作圆柱型电容,对其建立的静电传感器数学模型中的感应电极与屏蔽罩间电容值进行探讨,并得到了这个电容的计算式。
上传时间: 2014-12-24
上传用户:erkuizhang
本书分三部分介绍在美国广泛应用的、高功能的M68HC11系列单片机(8位机 ,Motorola公司)。内容包括M68HC11的结构与其基本原理、开发工具EVB(性能评估板)以及开发和应用技术。本书在介绍单片机硬、软件的基础上,进一步介绍了在美国实验室内,如何应用PC机及EVB来进行开发工作。通过本书的介绍,读者可了解这种单片机的原理并学会开发和应用方法。本书可作为大专院校单片机及其实验的教材(本科、短训班)。亦可供开发、应用单片机的各专业(计算机、机电、化工、纺织、冶金、自控、航空、航海……)有关技术人员参考。 第一部分 M68HC11 结构与原理Motorola单片机 1 Motorla单片机 1.1 概述 1.1.1 Motorola 单片机发展概况(3) 1.1.2 Motorola 单片机结构特点(4) 1.2 M68HC11系列单片机(5) 1.2.1 M68HC11产品系列(5) 1.2.2 MC68HC11E9特性(6) 1.2.3 MC68HC11E9单片机引脚说明(8) 1.3 Motorola 32位单片机(14) 1.3.1中央处理器(CPU32)(15) 1.3.2 定时处理器(TPU)(16) 1.3.3 串行队列模块(QSM)(16) 1.3.4 系统集成模块 (SIM)(16) 1.3.5 RAM(17) 2 系统配置与工作方式 2.1 系统配置(19) 2.1.1 配置寄存器CONFIG(19) 2.1.2 CONFIG寄存器的编程与擦除(20) 2?2 工作方式选择(21) 2.3 M68HC11的工作方式(23) 2.3.1 普通单片工作方式(23) 2.3.2 普通扩展工作方式(23) 2.3.3 特殊自举方式(27) 2.3.4 特殊测试方式(28) 3 中央处理器(CPU)与片上存储器 3.1 CPU寄存器(31) 3?1?1 累加器A、B和双累加器D(32) 3.1.2 变址寄存器X、Y(32) 3.1.3 栈指针SP(32) 3.1.4 程序计数器PC(33) 3.1.5 条件码寄存器CCR(33) 3.2 片上存储器(34) 3.2.1 存储器分布(34) 3.2.2 RAM和INIT寄存器(35) 3.2.3 ROM(37) 3.2.4 EEPROM(37) 3.3 M68HC11 CPU的低功耗方式(39) 3.3.1 WAIT方式(39) 3.3.2 STOP方式(40) 4 复位和中断 4.1 复位(41) 4.1.1 M68HC11的系统初始化条件(41) 4.1.2 复位形式(43) 4.2 中断(48) 4.2.1 条件码寄存器CCR中的中断屏蔽位(48) 4.2.2 中断优先级与中断矢量(49) 4.2.3 非屏蔽中断(52) 4.2.4 实时中断(53) 4.2.5 中断处理过程(56) 5 M68HC11指令系统 5.1 M68HC11寻址方式(59) 5.1.1 立即寻址(IMM)(59) 5.1.2 扩展寻址(EXT)(60) 5.1.3 直接寻址(DIR)(60) 5.1.4 变址寻址(INDX、INDY)(61) 5.1.5 固有寻址(INH)(62) 5.1.6 相对寻址(REL)(62) 5.1.7 前置字节(63) 5.2 M68HC11指令系统(63) 5.2.1 累加器和存储器指令(63) 5.2.2 栈和变址寄存器指令(68) 5.2.3 条件码寄存器指令(69) 5.2.4 程序控制指令(70) 6 输入与输出 6.1 概述(73) 6.2 并行I/O口(74) 6.2.1 并行I/O寄存器(74) 6.2.2 应答I/O子系统(76) 6?3 串行通信接口SCI(82) 6.3.1 基本特性(83) 6.3.2 数据格式(83) 6.3.3 SCI硬件结构(84) 6.3.4 SCI寄存器(86) 6.4 串行外围接口SPI(92) 6.4.1 SPI特性(92) 6.4.2 SPI引脚信号(92) 6.4.3 SPI结构(93) 6.4.4 SPI寄存器(95) 6.4.5 SPI系统与外部设备进行串行数据传输(99) 7 定时器系统与脉冲累加器 7.1 概述(105) 7.2 循环计数器(107) 7.2.1 时钟分频器(107) 7.2.2 计算机正常工作监视功能(110) 7.2.3 定时器标志的清除(110) 7.3 输入捕捉功能(111) 7.3.1 概述(111) 7.3.2 定时器输入捕捉锁存器(TIC1、TIC2、TIC3) 7.3.3 输入信号沿检测逻辑(113) 7.3.4 输入捕捉中断(113) 7.4 输出比较功能(114) 7.4.1 概述(114) 7.4.2 输出比较功能使用的寄存器(116) 7.4.3 输出比较示例(118) 7.5 脉冲累加器(119) 7.5.1 概述(119) 7.5.2 脉冲累加器控制和状态寄存器(121) 8 A/D转换系统 8.1 电荷重新分布技术与逐次逼近算法(125) 8.1.1 基本电路(125) 8.1.2 A/D转换逐次逼近算法原理(130) 8.2 M68HC11中A/D转换的实现方法(131) 8.2.1 逐次逼近A/D转换器(131) 8.2.2 控制寄存器(132) 8.2.3 系统控制逻辑(135)? 9 单片机的内部操作 9.1 用立即> 图书前言 美国Motorola公司从80年代中期开始推出的M68HC11系列单片机是当今功能最强、性能/价格比最好的八位单片微计算机之一。在美国,它已被广泛地应用于教学和各种工业控制系统中。? 该单片机有丰富的I/O功能,完善的系统保护功能和软件控制的节电工作方式 。它的指令系统与早期Motorola单片机MC6801等兼容,同时增加了91条新指令。其中包含16位乘法、除法运算指令等。 为便于用户开发和应用M68HC11单片机,Motorola公司提供了多种开发工具。M68HC11 EVB (Evaluation Board)性能评估板就是一种M68HC11系列单片机的廉价开发工具。它既可用来 调试用户程序,又可在仿真方式下运行。为方便用户,M68HC11 EVB可与IBM?PC连接 ,借助于交叉汇编、通信程序等软件,在IBM?PC上调试程序。? 本书分三部分(共15章)介绍了M68HC11的结构和基本原理、开发工具-EVB及开发应用实例等。第一部分(1~9章),介绍M68HC11的结构和基本原理。包括概述,系统配置与工作方式、CPU和存储器、复位和中断、指令系统、I/O、定时器系统和脉冲累加器、A/D转换系统、单片机的内部操作等。第二部分(10~11章),介绍M68HC11 EVB的原理和技术特性以及EVB的应用。第三部分(12~15章),介绍M68HC11的开发与应用技术。包括基本的编程练习、应用程序设计、接口实验、接口设计及应用等。 读者通过学习本书,不仅可了解M68HC11的硬件、软件,而且可了解使用EVB开发和应用M68HC11单片机的方法。在本书的第三部分专门提供了一部分实验和应用程序。? 本书系作者张宁作为高级访问学者,应邀在美国马萨诸塞州洛厄尔大学(University of Massachusetts Lowell)工作期间完成的。全书由张宁执笔。在编著过程中,美国洛厄尔大学的R·代克曼教授?(Professor Robert J. Dirkman)多次与张宁一起讨论、研究,并提供部分资料及实验数据。参加编写和审校等工作的还有王云霞、孙晓芳、刘安鲁、张籍、来安德、张杨等同志。? 为将M68HC11系列单片机尽快介绍给我国,美国Motorola公司的Terrence M.S.Heng先生曾大力支持本书的编著和出版。在此表示衷心感谢。
上传时间: 2013-10-27
上传用户:rlgl123
Keil C51使用详解Keil C51 是美国Keil Software 公司出品的51 系列兼容单片机C 语言软件开发系统,与汇编相比,C 语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。用过汇编语言后再使用C 来开发,体会更加深刻。Keil C51 软件提供丰富的库函数和功能强大的集成开发调试工具,全Windows界面。另外重要的一点,只要看一下编译后生成的汇编代码,就能体会到Keil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。在开发大型软件时更能体现高级语言的优势。下面详细介绍 Keil C51 开发系统各部分功能和使用。第二节 Keil C51 单片机软件开发系统的整体结构C51 工具包的整体结构,如图(1)所示,其中uVision 与Ishell 分别是C51 forWindows 和for Dos 的集成开发环境(IDE),可以完成编辑、编译、连接、调试、仿真等整个开发流程。开发人员可用IDE 本身或其它编辑器编辑C 或汇编源文件。然后分别由C51 及A51 编译器编译生成目标文件(.OBJ)。目标文件可由LIB51 创建生成库文件,也可以与库文件一起经L51 连接定位生成绝对目标文件(.ABS)。ABS 文件由OH51 转换成标准的Hex 文件,以供调试器dScope51 或tScope51 使用进行源代码级调试,也可由仿真器使用直接对目标板进行调试,也可以直接写入程序存贮器如EPROM 中。图(1) C51 工具包整体结构图第三节 Keil C51 工具包的安装81. C51 for Dos在 Windows 下直接运行软件包中DOS\C51DOS.exe 然后选择安装目录即可。完毕后欲使系统正常工作须进行以下操作(设C:\C51 为安装目录):修改 Autoexec.bat,加入path=C:\C51\BinSet C51LIB=C:\C51\LIBSet C51INC=C:\C51\INC然后运行Autoexec.bat2. C51 for Windows 的安装及注意事项:在 Windows 下运行软件包中WIN\Setup.exe,最好选择安装目录与C51 for Dos相同,这样设置最简单(设安装于C:\C51 目录下)。然后将软件包中crack 目录中的文件拷入C:\C51\Bin 目录下。第四节 Keil C51 工具包各部分功能及使用简介1. C51 与A51(1) C51C51 是C 语言编译器,其使用方法为:C51 sourcefile[编译控制指令]或者 C51 @ commandfile其中 sourcefile 为C 源文件(.C)。大量的编译控制指令完成C51 编译器的全部功能。包控C51 输出文件C.LST,.OBJ,.I 和.SRC 文件的控制。源文件(.C)的控制等,详见第五部分的具体介绍。而 Commandfile 为一个连接控制文件其内容包括:.C 源文件及各编译控制指令,它没有固定的名字,开发人员可根据自己的习惯指定,它适于用控制指令较多的场合。(2) A51A51 是汇编语言编译器,使用方法为:9A51 sourcefile[编译控制指令]或 A51 @ commandfile其中sourcefile 为汇编源文件(.asm或.a51),而编译控制指令的使用与其它汇编如ASM语言类似,可参考其他汇编语言材料。Commandfile 同C51 中的Commandfile 类似,它使A51 使用和修改方便。2. L51 和BL51(1) L51L51 是Keil C51 软件包提供的连接/定位器,其功能是将编译生成的OBJ 文件与库文件连接定位生成绝对目标文件(.ABS),其使用方法为:L51 目标文件列表[库文件列表] [to outputfile] [连接控制指令]或 L51 @Commandfile源程序的多个模块分别经 C51 与A51 编译后生成多个OBJ 文件,连接时,这些文件全列于目标文件列表中,作为输入文件,如果还需与库文件(.LiB)相连接,则库文件也必须列在其后。outputfile 为输文件名,缺少时为第一模块名,后缀为.ABS。连接控制指令提供了连接定位时的所有控制功能。Commandfile 为连接控制文件,其具体内容是包括了目标文件列表,库文件列表及输出文件、连接控制命令,以取代第一种繁琐的格式,由于目标模块库文件大多不止1 个,因而第2 种方法较多见,这个文件名字也可由使用者随意指定。(2) Bl51BL51 也是C51 软件包的连接/定位器,其具有L51 的所有功能,此外它还具有以下3 点特别之处:a. 可以连接定位大于64kBytes 的程序。b. 具有代码域及域切换功能(CodeBanking & Bank Switching)c. 可用于RTX51 操作系统RTX51 是一个实时多任务操作系统,它改变了传统的编程模式,甚至不必用main( )函数,单片机系统软件向RTOS 发展是一种趋势,这种趋势对于186 和38610及68K 系列CPU 更为明显和必须,对8051 因CPU 较为简单,程序结构等都不太复杂,RTX51 作用显得不太突出,其专业版软件PK51 软件包甚至不包括RTX51Full,而只有一个RTX51TINY 版本的RTOS。RTX51 TINY 适用于无外部RAM 的单片机系统,因而可用面很窄,在本文中不作介绍。Bank switching 技术因使用很少也不作介绍。3. DScope51,Tscope51 及Monitor51(1) dScope51dScope51 是一个源级调试器和模拟器,它可以调试由C51 编译器、A51 汇编器、PL/M-51 编译器及ASM-51 汇编器产生的程序。它不需目标板(for windows 也可通过mon51 接目标板),只能进行软件模拟,但其功能强大,可模拟CPU 及其外围器件,如内部串口,外部I/O 及定时器等,能对嵌入式软件功能进行有效测试。
上传时间: 2013-11-01
上传用户:zhouxuepeng1
EZ-USB FX系列单片机USB外围设备设计与应用:PART 1 USB的基本概念第1章 USB的基本特性1.1 USB简介21.2 USB的发展历程31.2.1 USB 1.131.2.2 USB 2.041.2.3 USB与IEEE 1394的比较41.3 USB基本架构与总线架构61.4 USB的总线结构81.5 USB数据流的模式与管线的概念91.6 USB硬件规范101.6.1 USB的硬件特性111.6.2 USB接口的电气特性121.6.3USB的电源管理141.7 USB的编码方式141.8 结论161.9 问题与讨论16第2章 USB通信协议2.1 USB通信协议172.2 USB封包中的数据域类型182.2.1 数据域位的格式182.3 封包格式192.4 USB传输的类型232.4.1 控制传输242.4.2 中断传输292.4.3 批量传输292.4.4 等时传输292.5 USB数据交换格式302.6 USB描述符342.7 USB设备请求422.8 USB设备群组442.9 结论462.10 问题与讨论46第3章 设备列举3.1注册表编辑器473.2设备列举的步骤493.3设备列举步骤的实现--使用CATC分析工具513.4结论613.5问题与讨论61第4章 USB芯片与EZUSB4.1USB芯片的简介624.2USB接口芯片644.2.1Philips接口芯片644.2.2National Semiconductor接口芯片664.3内含USB单元的微处理器684.3.1Motorola694.3.2Microchip694.3.3SIEMENS704.3.4Cypress714.4USB芯片总揽介绍734.5USB芯片的选择与评估744.6问题与讨论80第5章 设备与驱动程序5.1阶层式的驱动程序815.2主机的驱动程序835.3驱动程序的选择865.4结论865.5问题与讨论87第6章 HID群组6.1HID简介886.2HID群组的传输速率886.3HID描述符906.3.1报告描述符936.3.2主要 main 项目类型966.3.3整体 global 项目卷标976.3.4区域 local 项目卷标986.3.5简易的报告描述符996.3.6Descriptor Tool 描述符工具 1006.3.7兼容测试程序1016.4HID设备的基本请求1026.5Windows通信程序1036.6问题与讨论106PART 2 硬件技术篇第7章 EZUSB FX简介7.1简介1097.2EZUSB FX硬件框图1097.3封包与PID码1117.4主机是个主控者1137.4.1从主机接收数据1137.4.2传送数据至主机1137.5USB方向1137.6帧1147.7EZUSB FX传输类型1147.7.1批量传输1147.7.2中断传输1147.7.3等时传输1157.7.4控制传输1157.8设备列举1167.9USB核心1167.10EZUSB FX单片机1177.11重新设备列举1177.12EZUSB FX端点1187.12.1EZUSB FX批量端点1187.12.2EZUSB FX控制端点01187.12.3EZUSB FX中断端点1197.12.4EZUSB FX等时端点1197.13快速传送模式1197.14中断1207.15重置与电源管理1207.16EZUSB 2100系列1207.17FX系列--从FIFO1227.18FX系列--GPIF 通用型可程序化的接口 1227.19AN2122/26各种特性的摘要1227.20修订ID1237.21引脚描述123第8章 EZUSB FX CPU8.1简介1308.28051增强模式1308.3EZUSB FX所增强的部分1318.4EZUSB FX寄存器接口1318.5EZUSB FX内部RAM1318.6I/O端口1328.7中断1328.8电源控制1338.9特殊功能寄存器 SFR 1348.10内部总线1358.11重置136第9章 EZUSB FX内存9.1简介1379.28051内存1389.3扩充的EZUSB FX内存1399.4CS#与OE#信号1409.5EZUSB FX ROM版本141第10章 EZUSB FX输入/输出端口10.1简介14310.2I/O端口14310.3EZUSB输入/输出端口寄存器14610.3.1端口配置寄存器14710.3.2I/O端口寄存器14710.4EZUSB FX输入/输出端口寄存器14910.5EZUSB FX端口配置表15110.6I2C控制器15610.78051 I2C控制器15610.8控制位15810.8.1START位15810.8.2STOP位15810.8.3LASTRD位15810.9状态位15910.9.1DONE位15910.9.2ACK位15910.9.3BERR位15910.9.4ID1, ID015910.10送出 WRITE I2C数据16010.11接收 READ I2C数据16010.12I2C激活加载器16010.13SFR寻址 FX 16210.14端口A~E的SFR控制165第11章 EZUSB FX设备列举与重新设备列举11.1简介16711.2预设的USB设备16911.3USB核心对于EP0设备请求的响应17011.4固件下载17111.5设备列举模式17211.6没有存在EEPROM17311.7存在着EEPROM, 第一个字节是0xB0 0xB4, FX系列11.8存在着EEPROM, 第一个字节是0xB2 0xB6, FX系列11.9配置字节0,FX系列17711.10重新设备列举 ReNumerationTM 17811.11多重重新设备列举 ReNumerationTM 17911.12预设描述符179第12章 EZUSB FX批量传输12.1简介18812.2批量输入传输18912.3中断传输19112.4EZUSB FX批量IN的例子19112.5批量OUT传输19212.6端点对19412.7IN端点对的状态19412.8OUT端点对的状态19512.9使用批量缓冲区内存19512.10Data Toggle控制19612.11轮询的批量传输的范例19712.12设备列举说明19912.13批量端点中断19912.14中断批量传输的范例20112.15设备列举说明20512.16自动指针器205第13章 EZUSB控制端点013.1简介20913.2控制端点EP021013.3USB请求21213.3.1取得状态 Get_Status 21413.3.2设置特性(Set_Feature)21713.3.3清除特性(Clear_Feature)21813.3.4取得描述符(Get_Descriptor)21913.3.5设置描述符(Set Descriptor)22313.3.6设置配置(Set_Configuration)22513.3.7取得配置(Get_Configuration)22513.3.8设置接口(Set_Interface)22513.3.9取得接口(Get_Interface)22613.3.10设置地址(Set_Address)22713.3.11同步帧22713.3.12固件加载228第14章 EZUSB FX等时传输14.1简介22914.2等时IN传输23014.2.1初始化设置23014.2.2IN数据传输23014.3等时OUT传输23114.3.1初始化设置23114.3.2数据传输23214.4设置等时FIFO的大小23214.5等时传输速度23414.5.1EZUSB 2100系列23414.5.2EZUSB FX系列23514.6快速传输 仅存于2100系列 23614.6.1快速写入23614.6.2快速读取23714.7快速传输的时序 仅存于2100系列 23714.7.1快速写入波形23814.7.2快速读取波形23914.8快速传输速度(仅存于2100系列)23914.9其余的等时寄存器24014.9.1除能等时寄存器24014.9.20字节计数位24114.10以无数据来响应等时IN令牌24214.11使用等时FIFO242第15章 EZUSB FX中断15.1简介24315.2USB核心中断24415.3唤醒中断24415.4USB中断信号源24515.5SUTOK与SUDAV中断24815.6SOF中断24915.7中止 suspend 中断24915.8USB重置中断24915.9批量端点中断25015.10USB自动向量25015.11USB自动向量译码25115.12I2C中断25215.13IN批量NAK中断 仅存于AN2122/26与FX系列 25315.14I2C STOP反相中断 仅存于AN2122/26与FX系列 25415.15从FIFO中断 INT4 255第16章 EZUSB FX重置16.1简介25716.2EZUSB FX打开电源重置 POR 25716.38051重置的释放25916.3.1RAM的下载26016.3.2下载EEPROM26016.3.3外部ROM26016.48051重置所产生的影响26016.5USB总线重置26116.6EZUSB脱离26216.7各种重置状态的总结263第17章 EZUSB FX电源管理17.1简介26517.2中止 suspend 26617.3回复 resume 26717.4远程唤醒 remote wakeup 269第18章 EZUSB FX系统18.1简介27118.2DMA寄存器描述27218.2.1来源. 目的. 传输长度地址寄存器27218.2.2DMA起始与状态寄存器27518.2.3DMA同步突发使能寄存器27518.2.4虚拟寄存器27818.3RD/FRD与WR/FWR DMA闪控的选择27818.4DMA闪控波形与延伸位的交互影响27918.4.1DMA外部写入27918.4.2DMA外部读取280第19章 EZUSB FX寄存器19.1简介28219.2批量数据缓冲区寄存器28319.3等时数据FIFO寄存器28419.4等时字节计数寄存器28519.5CPU寄存器28719.6I/O端口配置寄存器28819.7I/O端口A~C输入/输出寄存器28919.8230 Kbaud UART操作--AN2122/26寄存器29119.9等时控制/状态寄存器29119.10I2C寄存器29219.11中断29419.12端点0控制与状态寄存器29919.13端点1~7的控制与状态寄存器30019.14整体USB寄存器30519.15快速传输30919.16SETUP数据31119.17等时FIFO的容量大小31119.18通用I/F中断使能31219.19通用中断请求31219.20输入/输出端口寄存器D与E31319.20.1端口D输出31319.20.2输入端口D脚位31319.20.3端口D输出使能31319.20.4端口E输出31319.20.5输入端口E脚位31419.20.6端口E输出使能31419.21端口设置31419.22接口配置31419.23端口A与端口C切换配置31619.23.1端口A切换配置#231619.23.2端口C切换配置#231719.24DMA寄存器31919.24.1来源. 目的. 传输长度地址寄存器31919.24.2DMA起始与状态寄存器32019.24.3DMA同步突发使能寄存器32019.24.4选择8051 A/D总线作为外部FIFO321PART 3 固件技术篇第20章 EZUSB FX固件架构与函数库20.1固件架构总览32320.2固件架构的建立32520.3固件架构的副函数钩子32520.3.1工作分配器32620.3.2设备请求 device request 32620.3.3USB中断服务例程32920.4固件架构整体变量33220.5描述符表33320.5.1设备描述符33320.5.2配置描述符33420.5.3接口描述符33420.5.4端点描述符33520.5.5字符串描述符33520.5.6群组描述符33520.6EZUSB FX固件的函数库33620.6.1包含文件 *.H 33620.6.2子程序33620.6.3整体变量33820.7固件架构的原始程序代码338第21章 EZUSB FX固件范例程序21.1范例程序的简介34621.2外围I/O测试程序34721.3端点对, EP_PAIR范例35221.4批量测试, BulkTest范例36221.5等时传输, ISOstrm范例36821.6问题与讨论373PART 4 实验篇第22章 EZUSB FX仿真器22?1简介37522?2所需的工具37622?3EZUSB FX框图37722.4EZUSB最终版本的系统框图37822?5第一次下载程序37822.6EZUSB FX开发系统框图37922.7设置开发环境38022.8EZUSB FX开发工具组的内容38122.9EZUSB FX开发工具组软件38222.9.1初步安装程序38222.9.2确认主机 个人计算机 是否支持USB38222.10安装EZUSB控制平台. 驱动程序以及文件38322.11EZUSB FX开发电路板38522.11.1简介38522.11.2开发电路板的浏览38522.11.3所使用的8051资源38622.11.4详细电路38622.11.5LED的显示38722.11.6Jumper38722.11.7连接器39122.11.8内存映象图39222.11.9PLD信号39422.11.10PLD源文件文件39522.11.11雏形板的扩充连接器P1~P639722.11.12Philips PCF8574 I/O扩充IC40022.12DMA USB FX I/O LAB开发工具介绍40122.12.1USBFX简介40122.12.2USBFX及外围整体环境介绍40322?12?3USBFX与PC连接软件介绍40422.12.4USBFX硬件功能介绍404第23章 LED显示器输出实验23.1硬件设计与基本概念40923.2固件设计41023.3.1固件架构文件FW.C41123.3.2描述符文件DESCR.A5141223.3.3外围接口文件PERIPH.C41723.4固件程序代码的编译与链接42123.5Windows程序, VB设计42323.6INF文件的编写设计42423.7结论42623.8问题与讨论427第24章 七段显示器与键盘的输入/输出实验24.1硬件设计与基本概念42824.2固件设计43124.2.1七段显示器43124.2.24×4键盘扫描43324.3固件程序代码的编译与链接43424.4Windows程序, VB设计43624.5问题与讨论437第25章 LCD文字型液晶显示器输出实验25.1硬件设计与基本概念43825.1.1液晶显示器LCD43825.2固件设计45225.3固件程序代码的编译与链接45625.4Windows程序, VB设计45725.5问题与讨论458第26章 LED点阵输出实验26.1硬件设计与基本概念45926.2固件设计46326.3固件程序代码的编译与链接46326.4Windows程序, VB设计46526.5问题与讨论465第27章 步进电机输出实验27.1硬件设计与基本概念46627.1.11相激磁46727.1.22相激磁46727.1.31-2相激磁46827?1?4PMM8713介绍46927.2固件设计47327.3固件程序代码的编译与链接47427.4Windows程序, VB设计47627.5问题与讨论477第28章 I2C接口输入/输出实验28.1硬件设计与基本概念47828.2固件设计48128.3固件程序代码的编译与链接48328.4Windows程序, VB设计48428.5问题与讨论485第29章 A/D转换器与D/A转换器的输入/输出实验29.1硬件设计与基本概念48629.1.1A/D转换器48629.1.2D/A转换器49029.2固件设计49329.2.1A/D转换器的固件设计49329.2.2D/A转换器的固件设计49629.3固件程序代码的编译与链接49729.4Windows程序, VB设计49829.5问题与讨论499第30章 LCG绘图型液晶显示器输出实验30.1硬件设计与基本概念50030.1.1绘图型LCD50030.1.2绘图型LCD控制指令集50330.1.3绘图型LCD读取与写入时序图50530.2固件设计50630.2.1LCG驱动程序50630.2.2USB固件码51330.3固件程序代码的编译与链接51630.4Windows程序, VB设计51730.5问题与讨论518附录A Cypress控制平台的操作A.1EZUSB控制平台总览519A.2主画面520A.3热插拔新的USB设备521A.4各种工具栏的使用524A.5故障排除526A.6控制平台的进阶操作527A.7测试Unary Op工具栏上的按钮功能528A.8测试制造商请求的工具栏 2100 系列的开发电路板 529A.9测试等时传输工具栏532A.10测试批量传输工具栏533A.11测试重置管线工具栏535A.12测试设置接口工具栏537A.13测试制造商请求工具栏 FX系列开发电路板A.14执行Get Device Descriptor 操作来验证开发板的功能是否正确539A.15从EZUSB控制平台中, 加载dev_io的范例并且加以执行540A.16从Keil侦错应用程序中, 加载dev_io范例程序代码, 然后再加以执行542A.17将dev_io 目标文件移开, 且使用Keil IDE 集成开发环境 来重建545A.18在侦错器下执行dev_io目标文件, 并且使用具有侦错能力的IDE547A.19在EZUSB控制平台下, 执行ep_pair目标文件A.20如何修改fw范例, 并在开发电路板上产生等时传输550附录BEZUSB 2100系列及EZUSB FX系列引脚表B.1EZUSB 2100系列引脚表555B?2EZUSB FX系列引脚图表561附录C EZUSB FX寄存器总览附录D EEPROM烧录方式
上传时间: 2013-11-21
上传用户:努力努力再努力
含原理图+电路图+程序的波形发生器:在工作中,我们常常会用到波形发生器,它是使用频度很高的电子仪器。现在的波形发生器都采用单片机来构成。单片机波形发生器是以单片机核心,配相应的外围电路和功能软件,能实现各种波形发生的应用系统,它由硬件部分和软件部分组成,硬件是系统的基础,软件则是在硬件的基础上,对其合理的调配和使用,从而完成波形发生的任务。 波形发生器的技术指标:(1) 波形类型:方型、正弦波、三角波、锯齿波;(2) 幅值电压:1V、2V、3V、4V、5V;(3) 频率值:10HZ、20HZ、50HZ、100HZ、200HZ、500HZ、1KHZ;(4) 输出极性:双极性操作设计1、 机器通电后,系统进行初始化,LED在面板上显示6个0,表示系统处于初始状态,等待用户输入设置命令,此时,无任何波形信号输出。2、 用户按下“F”、“V”、“W”,可以分别进入频率,幅值波形设置,使系统进入设置状态,相应的数码管显示“一”,此时,按其它键,无效;3、 在进入某一设置状态后,输入0~9等数字键,(数字键仅在设置状态时,有效)为欲输出的波形设置相应参数,LED将参数显示在面板上;4、 如果在设置中,要改变已设定的参数,可按下“CL”键,清除所有已设定参数,系统恢复初始状态,LED显示6个0,等待重新输入命令;5、 当必要的参数设定完毕后,所有参数显示于LED上,用户按下“EN”键,系统会将各波形参数传递到波形产生模块中,以便控制波形发生,实现不同频率,不同电压幅值,不同类型波形的输出;6、 用户按下“EN”键后,波形发生器开始输出满足参数的波形信号,面板上相应类型的运行指示灯闪烁,表示波形正在输出,LED显示波形类型编号,频率值、电压幅值等波形参数;7、 波形发生器在输出信号时,按下任意一个键,就停止波形信号输出,等待重新设置参数,设置过程如上所述,如果不改变参数,可按下“EN”键,继续输出原波形信号;8、 要停止波形发生器的使用,可按下复位按钮,将系统复位,然后关闭电源。硬件组成部分通过综合比较,决定选用获得广泛应用,性能价格高的常用芯片来构成硬件电路。单片机采用MCS-51系列的89C51(一块),74LS244和74LS373(各一块),反相驱动器 ULN2803A(一块),运算放大器 LM324(一块) 波形发生器的硬件电路由单片机、键盘显示器接口电路、波形转换(D/ A)电路和电源线路等四部分构成。1.单片机电路功能:形成扫描码,键值识别,键功能处理,完成参数设置;形成显示段码,向LED显示接口电路输出;产生定时中断;形成波形的数字编码,并输出到D/A接口电路;如电路原理图所示: 89C51的P0口和P2口作为扩展I/O口,与8255、0832、74LS373相连接,可寻址片外的寄存器。单片机寻址外设,采用存储器映像方式,外部接口芯片与内部存储器统一编址,89C51提供16根地址线P0(分时复用)和P2,P2口提供高8位地址线,P0口提供低8位地址线。P0口同时还要负责与8255,0832的数据传递。P2.7是8255的片选信号,P2.6是0832(1)的片选,P2.5是0832(2)的片选,低电平有效,P0.0、P0.1经过74LS373锁存后,送到8255的A1、A2作,片内A口,B口,C口,控制口等寄存器的字选。89C51的P1口的低4位连接4只发光三极管,作为波形类型指示灯,表示正在输出的波形是什么类型。单片机89C51内部有两个定时器/计数器,在波形发生器中使用T0作为中断源。不同的频率值对应不同的定时初值,定时器的溢出信号作为中断请求。控制定时器中断的特殊功能寄存器设置如下:定时控制寄存器TCON=(00010000)工作方式选择寄存器(TMOD)=(00000000)中断允许控制寄存器(IE)=(10000010)2、键盘显示器接口电路功能:驱动6位数码管动态显示; 提供响应界面; 扫面键盘; 提供输入按键。由并口芯片8255,锁存器74LS273,74LS244,反向驱动器ULN2803A,6位共阴极数码管(LED)和4×4行列式键盘组成。8255的C口作为键盘的I/O接口,C口的低4位输出到扫描码,高4位作为输入行状态,按键的分布如图所示。8255的A口作为LED段码输出口,与74LS244相连接,B口作为LED的位选信号输出口,与ULN2803A相连接。8255内部的4个寄存器地址分配如下:控制口:7FFFH , A口:7FFFCH , B口:7FFDH , C口:7FFEH 3、D/A电路功能:将波形样值的数字编码转换成模拟值;完成单极性向双极性的波形输出;构成由两片0832和一块LM324运放组成。0832(1)是参考电压提供者,单片机向0832(1)内的锁存器送数字编码,不同的编码会产生不同的输出值,在本发生器中,可输出1V、2V、3V、4V、5V等五个模拟值,这些值作为0832(2)的参考电压,使0832(2)输出波形信号时,其幅度是可调的。0832(2)用于产生各种波形信号,单片机在波形产生程序的控制下,生成波形样值编码,并送到0832(2)中的锁存器,经过D/A转换,得到波形的模拟样值点,假如N个点就构成波形的一个周期,那么0832(2)输出N个样值点后,样值点形成运动轨迹,就是波形信号的一个周期。重复输出N个点后,由此成第二个周期,第三个周期……。这样0832(2)就能连续的输出周期变化的波形信号。运放A1是直流放大器,运放A2是单极性电压放大器,运放A3是双极性驱动放大器,使波形信号能带得起负载。地址分配:0832(1):DFFFH ,0832(2):BFFFH4、电源电路:功能:为波形发生器提供直流能量;构成由变压器、整流硅堆,稳压块7805组成。220V的交流电,经过开关,保险管(1.5A/250V),到变压器降压,由220V降为10V,通过硅堆将交流电变成直流电,对于谐波,用4700μF的电解电容给予滤除。为保证直流电压稳定,使用7805进行稳压。最后,+5V电源配送到各用电负载。
上传时间: 2013-11-08
上传用户:685