虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

国标、GBT 1.1-2020 <b>标准化</b>工作导则

  • 微电脑型数学演算式隔离传送器

    特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高

    标签: 微电脑 数学演算 隔离传送器

    上传时间: 2014-12-23

    上传用户:ydd3625

  • 声卡虚拟示波器

    功能简介 虚仪声卡万用仪是一个功能强大的基于个人电脑的虚拟仪器。它由声卡实时双踪示波器、声卡实时双踪频谱分析仪和声卡双踪信号发生器组成,这三种仪器可同时使用。本仪器内含一个独特设计的专门适用于声卡信号采集的算法,它能连续监视输入信号,只有当输入信号满足触发条件时,才采集一幀数据,即先触发后采集,因而不会错过任何触发事件。这与同类仪器中常用的先采集一长段数据,然后再在其中寻找触发点的方式,即先采集后触发,截然不同。因此本仪器能达到每秒50幀的快速屏幕刷新率,从而实现了真正的实时信号采集、分析和显示。本仪器还支持各种复杂的触发方式包括超前触发和延迟触发。 虚仪声卡万用仪发挥了以电脑屏幕作为显示的虚拟仪器的优点,支持图形显示的放大和滚动,并将屏幕的绝大部分面积用于数据显示,使您能够深入研究被测信号的任何细节。而市面上有些同类仪器则在人机界面上过分追求“形”似,将传统仪器的面板简单地模拟到电脑屏幕上,占用了大量宝贵的屏幕资源,仅留下较小面积供数据显示用。 虚仪声卡万用仪提供了一套完整的信号测试与分析功能,包括:双踪波形、波形相加、波形相减、李莎如图、电压表、瞬态信号捕捉、RMS绝对幅度谱、相对幅度谱、八度分析(1/1、1/3、1/6、1/12、1/24)、THD、THD+N、SNR、SINAD、频率响应、阻抗测试、相位谱、自相关函数、互相关函数、函数发生器、任意波形发生器、白噪声发生器、粉红噪声发生器、多音合成发生器和扫频信号发生器等。 虚仪声卡万用仪将采集到的数据和分析后的数据保存为标准的WAV波形文件或TXT文本文件。它也支持WAV波形文件的输入和BMP图像文件的输出和打印。支持24比特采样分辨率。支持WAV波形文件的合并和数据抽取。

    标签: 声卡 虚拟示波器

    上传时间: 2013-10-25

    上传用户:silenthink

  • 高等模拟集成电路

    近年来,随着集成电路工艺技术的进步,电子系统的构成发生了两个重要的变化: 一个是数字信号处理和数字电路成为系统的核心,一个是整个电子系统可以集成在一个芯片上(称为片上系统)。这些变化改变了模拟电路在电子系统中的作用,并且影响着模拟集成电路的发展。 数字电路不仅具有远远超过模拟电路的集成规模,而且具有可编程、灵活、易于附加功能、设计周期短、对噪声和制造工艺误差的抗扰性强等优点,因而大多数复杂系统以数字信号处理和数字电路为核心已成为必然的趋势。虽然如此,模拟电路仍然是电子系统中非常重要的组成部分。这是因为我们接触到的外部世界的物理量主要都是模拟量,比如图像、声音、压力、温度、湿度、重量等,要将它们变换为数字信号,需要模拟信号处理和数据转换电路,如果这些电路性能不够高,将会影响整个系统的性能。其次,系统中的许多功能不可能或很难用数字电路完成,如微弱信号放大,很高频率和宽频带信号的实时处理等。因此,虽然模拟电路在系统中不再是核心,但作为固有的模拟世界与数字系统的接口,其地位和作用仍然十分重要。 片上系统要求将数字电路和模拟电路集成在一个芯片上,这希望模拟电路使用与数字电路相同的制造工艺。随着MOS器件的线宽不断减小,使MOS器件的性能不断提高,MOS数字电路成为数字集成电路的主流,并因此促进了MOS模拟集成电路的迅速发展。为了适应电子系统功能的不断扩展和性能的不断提高,对模拟电路在降低电源电压、提高工作频率、扩大线性工作范围和提高性能指标的精度和稳定度等方面提出更高要求,促进了新电路技术的发展。 作为研究生课程的教材,本书内容是在本科相关课程基础上的深化和扩展,同时涉及实际设计中需要考虑的一些问题,重点介绍具有高工作频率、低电源电压和高工作稳定性的新电路技术和在电子系统中占有重要地位的功能电路及其中的新技术。全书共7章,大致可分为三个部分。第一部分包括第1章和第7章。第1章为MOS模拟集成电路基础,比较全面地介绍MOS器件的工作原理和特性以及由MOS器件构成的基本单元电路,为学习本教材其他内容提供必要的知识。由于版图设计与工艺参数对模拟集成电路性能的影响很大,因此第7章简单介绍制造MOS模拟集成电路的CMOS工艺过程和版图设计技术,读者可以通过对该章所介绍的相关背景知识的了解,更深入地理解MOS器件和电路的特性,有助于更好地完成模拟集成电路的可实现性设计。第二部分为新电路技术,由第2章、第3章和第5章的部分组成,包括近年来逐步获得广泛应用的电流模电路、抽样数据电路和对数域电路,它们在提高工作频率、降低电源电压、扩大线性工作范围和提高性能指标的精度和稳定度方面具有明显的潜力,同时它们也引入了一些模拟电路的新概念。这些内容有助于读者开拓提高电路性能方面的思路。第2章介绍电流模电路的工作原理、特点和典型电路。与传统的以电压作为信号载体的电路不同,这是一种以电流作为信号载体的电路,虽然在电路中电压和电流总是共同存在并相互作用的,但由于信号载体不同,不仅电路性能不同而且电路结构也不同。第3章介绍抽样数据电路的特点和开关电容与开关电流电路的工作原理、分析方法与典型电路。抽样数据电路类似于数字电路,处理的是时间离散信号,又类似于模拟电路,处理的是幅度连续信号,它比模拟电路具有稳定准确的时间常数,解决了模拟电路实际应用中的一大障碍。对数域电路在第5章中结合其在滤波器中的应用介绍,这类电路除具有良好的电性能外,还提出了一种利用器件的非线性特性实现线性电路的新思路。第三部分介绍几个模拟电路的功能模块,它们是电子系统中的关键组成部分,并且与信号和信号处理联系密切,有助于在信号和电路间形成整体观念。这部分包括第4章至第6章。第4章介绍数据转换电路的技术指标和高精度与高速度转换电路的构成、工作原理、特点和典型电路。第5章介绍模拟集成滤波器的设计方法和主要类型,包括连续时间滤波器、对数域滤波器和抽样数据滤波器。第6章介绍通信系统中的收发器与射频前端电路,包括收信器、发信器的技术指标、结构和典型电路。因为载波通信系统传输的是模拟信号,射频前端电路的性能对整个通信系统有直接的影响,所以射频集成电路已成为重要的研究课题。 〖〗高等模拟集成电路〖〗〖〗前言〖〗〖〗本书是在为研究生开设的“高等模拟集成电路”课程讲义的基础上整理而成,由董在望主编,第1、4、7章由李冬梅编写,第6章由王志华编写,第5章由李永明和董在望编写,第2、3章由董在望编写,李国林参加了部分章节的校核工作。 本书可作为信息与通信工程和电子科学与技术学科相关课程的研究生教材或教学参考书,也可作为本科教学参考书或选修课教材和供相关专业的工程技术人员参考。 清华大学出版社多位编辑为本书的出版做了卓有成效的工作,深致谢意。 限于编者水平,难免有错误和疏漏之处,欢迎批评指正。 目录 1.1MOS器件基础及器件模型 1.1.1结构及工作原理 1.1.2衬底调制效应 1.1.3小信号模型 1.1.4亚阈区效应 1.1.5短沟效应 1.1.6SPICE模型 1.2基本放大电路 1.2.1共源(CS)放大电路 1.2.2共漏(CD)放大电路 1.2.3共栅(CG)放大电路 1.2.4共源共栅(CSCG)放大电路 1.2.5差分放大电路 1.3电流源电路 1.3.1二极管连接的MOS器件 1.3.2基本镜像电流源 1.3.3威尔逊电流源 1.3.4共源共栅电流源 1.3.5有源负载放大电路 1.4运算放大器 1.4.1运算放大器的主要参数 1.4.2单级运算放大器 1.4.3两级运算放大器 1.4.4共模反馈(CMFB) 1.4.5运算放大器的频率补偿 1.5模拟开关 1.5.1导通电阻 1.5.2电荷注入与时钟馈通 1.6带隙基准电压源 1.6.1工作原理 1.6.2与CMOS工艺兼容的带隙基准电压源 思考题 2电流模电路 2.1概述 2.1.1电流模电路的概念 2.1.2电流模电路的特点 2.2基本电流模电路 2.2.1电流镜电路 2.2.2电流放大器 2.2.3电流模积分器 2.3电流模功能电路 2.3.1跨导线性电路 2.3.2电流传输器 2.4从电压模电路变换到电流模电路 2.5电流模电路中的非理想效应 2.5.1MOSFET之间的失配 2.5.2寄生电容对频率特性的影响 思考题 3抽样数据电路 3.1开关电容电路和开关电流电路的基本分析方法 3.1.1开关电容电路的时域分析 3.1.2开关电流电路的时域分析 3.1.3抽样数据电路的频域分析 3.2开关电容电路 3.2.1开关电容单元电路 3.2.2开关电容电路的特点 3.2.3非理想因素的影响 3.3开关电流电路 3.3.1开关电流单元电路 3.3.2开关电流电路的特点 3.3.3非理想因素的影响 思考题 4A/D转换器与D/A转换器 4.1概述 4.1.1电子系统中的A/D与D/A转换 4.1.2A/D与D/A转换器的基本原理 4.1.3A/D与D/A转换器的性能指标 4.1.4A/D与D/A转换器的分类 4.1.5A/D与D/A转换器中常用的数码类型 4.2高速A/D转换器 4.2.1全并行结构A/D转换器 4.2.2两步结构A/D转换器 4.2.3插值与折叠结构A/D转换器 4.2.4流水线结构A/D转换器 4.2.5交织结构A/D转换器 4.3高精度A/D转换器 4.3.1逐次逼近型A/D转换器 4.3.2双斜率积分型A/D转换器 4.3.3过采样ΣΔA/D转换器 4.4D/A转换器 4.4.1电阻型D/A转换器 4.4.2电流型D/A转换器 4.4.3电容型D/A转换器 思考题 5集成滤波器 5.1引言 5.1.1滤波器的数学描述 5.1.2滤波器的频率特性 5.1.3滤波器设计的逼近方法 5.2连续时间滤波器 5.2.1连续时间滤波器的设计方法 5.2.2跨导电容(GmC)连续时间滤波器 5.2.3连续时间滤波器的片上自动调节电路 5.3对数域滤波器 5.3.1对数域电路概念及其特点 5.3.2对数域电路基本单元 5.3.3对数域滤波器 5.4抽样数据滤波器 5.4.1设计方法 5.4.2SZ域映射 5.4.3开关电容电路转换为开关电流电路的方法 思考题 6收发器与射频前端电路 6.1通信系统中的射频收发器 6.2集成收信器 6.2.1外差式接收与镜像信号 6.2.2复数信号处理 6.2.3收信器前端结构 6.3集成发信器 6.3.1上变换器 6.3.2发信器结构 6.4收发器的技术指标 6.4.1噪声性能 6.4.2灵敏度 6.4.3失真特性与线性度 6.4.4动态范围 6.5射频电路设计 6.5.1晶体管模型与参数 6.5.2噪声 6.5.3集成无源器件 6.5.4低噪声放大器 6.5.5混频器 6.5.6频率综合器 6.5.7功率放大器 思考题 7CMOS集成电路制造工艺及版图设计 7.1集成电路制造工艺简介 7.1.1单晶生长与衬底制备 7.1.2光刻 7.1.3氧化 7.1.4扩散及离子注入 7.1.5化学气相淀积(CVD) 7.1.6接触与互连 7.2CMOS工艺流程与集成电路中的元件 7.2.1硅栅CMOS工艺流程 7.2.2CMOS集成电路中的无源元件 7.2.3CMOS集成电路中的寄生效应 7.3版图设计 7.3.1硅栅CMOS集成电路的版图构成 7.3.2版图设计规则 7.3.3CMOS版图设计技术 思考题

    标签: 模拟集成电路

    上传时间: 2013-11-13

    上传用户:chengxin

  • 西门子S7-200 CPU PID控制图解

    PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e (t)与输出u (t)的关系为 u(t)=kp[e(t)+1/TI∫e(t)dt+TD*de(t)/dt] 式中积分的上下限分别是0和t 因此它的传递函数为:G(s)=U(s)/E(s)=kp[1+1/(TI*s)+TD*s] 其中kp为比例系数; TI为积分时间常数; TD为微分时间常数.  

    标签: 200 CPU PID 西门子

    上传时间: 2013-11-04

    上传用户:jiiszha

  • 证券模拟实验室管理制度

    证券模拟实验室工作人员日常行为准则1、 必须注意环境卫生。禁止在实验室、办公室内吃食物、抽烟、随地吐痰;对于意外或工作过程中污染实验室地板和其它物品的,必须及时采取措施清理干净,保持实验室无尘洁净环境。 2、 必须注意个人卫生。工作人员仪表、穿着要整齐、谈吐文雅、举止大方。 3、 实验室用品要各归其位,不能随意乱放。 4、 实验室应安排人员值日,负责实验室的日常整理和行为督导。 5、 实验室的防晒、防水、防潮,维持实验室环境通爽,注意天气对实验室的影响,雨天应及时主动检查和关闭窗户、检查去水通风等设施。 6、 实验室内部不应大声喧哗、注意音响音量控制、保持安静的工作环境。 7、 坚持每天下班之前将桌面收拾干净、物品摆放整齐。

    标签: 模拟 实验室管理 制度

    上传时间: 2013-12-30

    上传用户:shanxiliuxu

  • 脉冲波形的产生和整形

    脉冲波形的产生和整形:介绍矩形脉冲波形的产生和整形电路。 在脉冲整形电路中。介绍了最常用的两类整形电路——施密特触发器和单稳态触发器电路。在本章的最后,讨论了广为应用的555定时器和用它构成施密特触发器、单稳态触发器和多谐振荡器的方法。 7.1单稳态触发器 单稳态触发器的工作特性具有如下的显著特点; 第一,它有稳态和暂稳态两个不同的工作状态; 第二,在外界触发脉冲作用下,能从稳态翻转到暂稳态,在暂稳态维持一段时间以后,再自动返问稳态; 第三,暂稳态维持时间的长短取决于电路本身的参数,与触发脉冲的宽度和幅度无关。 由于具备这些特点。单稳态触发器被广泛应用于脉冲整形、延时(产生滞后于触发脉冲的输出脉冲)以及定时(产生固定时间宽度的脉冲信号)等。 7.1.1脉冲波形的主要参数     获取矩形脉冲波形的途径不外乎有两种:一种是利用各种形式的多谐振荡器电路直接产生所需要的矩形脉冲,另一种则是通过各种整形电路把已有的周期性变化波形变换为符合要求的矩形脉冲。当然,在采用整形的方法获取矩形脉冲时,是以能够找到频率和幅度都符合要求的一种已有电压信号为前提的。     在同步时序电路中,作为时钟信号的矩形脉冲控制和协调着整个系统的工作。因此,时钟脉冲的特性直接关系到系统能否正常地工作。为了定量描述矩形脉冲的特性,通常给出图7-1  中所标注的几个主要参数。这些参数是: 脉冲周期  ——周期性重复的脉冲序列中,两个相邻脉冲之间的时间间隔。有时也使用频率 表示单位时间内脉冲重复的次数。

    标签: 脉冲波形

    上传时间: 2013-10-08

    上传用户:gai928943

  • 最新电阻色环的识别教程 软件下载

    色环电阻识别小程序V1.0--功能说明: 1、能直接根据色环电阻的颜色计算出电阻值和偏差; 2、能根据电阻值,反标电阻颜色; 3、支持四环、五环电阻计算; 4、带万用表直读数; 色环电阻识别小程序--使用说明: 1、选择电阻环数;(四环电阻或五环电阻) 2、如果是“色环转阻值”则:鼠标点击对应环的颜色,然后点按钮“色环→阻值” 3、如果是“阻值转色环”则:输入相应阻值、单位、精度,点按钮“阻值→色环” 国家标称电阻值说明: ★E6±20%系列:1.0、1.5、2.2、3.3、4.7、6.8 E12±10%系列:1.0、1.2、1.5、1.8、2.2、2.7、3.3、3.9、4.7、5.6、6.8、8.2、9.1 E24 I级±5%:1.0、1.1、1.2、1.3、1.5、1.6、1.8、2.0、2.2、2.4、2.7、3.0、3.3、3.6、3.9、4.3、4.7、5.1、5.6、6.2、6.8、7.5、8.2、9.1 使用注意事项: 1、请不要带电和在路测试电阻,这样操作既不安全也不能测出正确阻值; 2、请不要用手接触到电阻引脚,因为人体也有电阻,会使测试值产生误差; 3、请正确选择万用表的档位(电阻档)和量程(200、20K、2M量程)

    标签: 最新电阻色环的 教程 识别

    上传时间: 2014-12-24

    上传用户:pinksun9

  • 高性能覆铜板的发展趋势及对环氧树脂性能的新需求

    讨论、研究高性能覆铜板对它所用的环氧树脂的性能要求,应是立足整个产业链的角度去观察、分析。特别应从HDI多层板发展对高性能CCL有哪些主要性能需求上着手研究。HDI多层板有哪些发展特点,它的发展趋势如何——这都是我们所要研究的高性能CCL发展趋势和重点的基本依据。而HDI多层板的技术发展,又是由它的应用市场——终端电子产品的发展所驱动(见图1)。 图1 在HDI多层板产业链中各类产品对下游产品的性能需求关系图 1.HDI多层板发展特点对高性能覆铜板技术进步的影响1.1 HDI多层板的问世,对传统PCB技术及其基板材料技术是一个严峻挑战20世纪90年代初,出现新一代高密度互连(High Density Interconnection,简称为 HDI)印制电路板——积层法多层板(Build—Up Multiplayer printed board,简称为 BUM)的最早开发成果。它的问世是全世界几十年的印制电路板技术发展历程中的重大事件。积层法多层板即HDI多层板,至今仍是发展HDI的PCB的最好、最普遍的产品形式。在HDI多层板之上,将最新PCB尖端技术体现得淋漓尽致。HDI多层板产品结构具有三大突出的特征:“微孔、细线、薄层化”。其中“微孔”是它的结构特点中核心与灵魂。因此,现又将这类HDI多层板称作为“微孔板”。HDI多层板已经历了十几年的发展历程,但它在技术上仍充满着朝气蓬勃的活力,在市场上仍有着前程广阔的空间。

    标签: 性能 发展趋势 覆铜板 环氧树脂

    上传时间: 2013-11-22

    上传用户:gundan

  • 信号完整性知识基础(pdf)

    现代的电子设计和芯片制造技术正在飞速发展,电子产品的复杂度、时钟和总线频率等等都呈快速上升趋势,但系统的电压却不断在减小,所有的这一切加上产品投放市场的时间要求给设计师带来了前所未有的巨大压力。要想保证产品的一次性成功就必须能预见设计中可能出现的各种问题,并及时给出合理的解决方案,对于高速的数字电路来说,最令人头大的莫过于如何确保瞬时跳变的数字信号通过较长的一段传输线,还能完整地被接收,并保证良好的电磁兼容性,这就是目前颇受关注的信号完整性(SI)问题。本章就是围绕信号完整性的问题,让大家对高速电路有个基本的认识,并介绍一些相关的基本概念。 第一章 高速数字电路概述.....................................................................................51.1 何为高速电路...............................................................................................51.2 高速带来的问题及设计流程剖析...............................................................61.3 相关的一些基本概念...................................................................................8第二章 传输线理论...............................................................................................122.1 分布式系统和集总电路.............................................................................122.2 传输线的RLCG 模型和电报方程...............................................................132.3 传输线的特征阻抗.....................................................................................142.3.1 特性阻抗的本质.................................................................................142.3.2 特征阻抗相关计算.............................................................................152.3.3 特性阻抗对信号完整性的影响.........................................................172.4 传输线电报方程及推导.............................................................................182.5 趋肤效应和集束效应.................................................................................232.6 信号的反射.................................................................................................252.6.1 反射机理和电报方程.........................................................................252.6.2 反射导致信号的失真问题.................................................................302.6.2.1 过冲和下冲.....................................................................................302.6.2.2 振荡:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分线的匹配.................................................................................392.6.3.4 多负载的匹配.................................................................................41第三章 串扰的分析...............................................................................................423.1 串扰的基本概念.........................................................................................423.2 前向串扰和后向串扰.................................................................................433.3 后向串扰的反射.........................................................................................463.4 后向串扰的饱和.........................................................................................463.5 共模和差模电流对串扰的影响.................................................................483.6 连接器的串扰问题.....................................................................................513.7 串扰的具体计算.........................................................................................543.8 避免串扰的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的产生..................................................................................................614.2.1 电压瞬变.............................................................................................614.2.2 信号的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 电场屏蔽.........................................................................................654.3.1.2 磁场屏蔽.........................................................................................674.3.1.3 电磁场屏蔽.....................................................................................674.3.1.4 电磁屏蔽体和屏蔽效率.................................................................684.3.2 滤波.....................................................................................................714.3.2.1 去耦电容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 设计中的EMI.......................................................................................754.4.1 传输线RLC 参数和EMI ........................................................................764.4.2 叠层设计抑制EMI ..............................................................................774.4.3 电容和接地过孔对回流的作用.........................................................784.4.4 布局和走线规则.................................................................................79第五章 电源完整性理论基础...............................................................................825.1 电源噪声的起因及危害.............................................................................825.2 电源阻抗设计.............................................................................................855.3 同步开关噪声分析.....................................................................................875.3.1 芯片内部开关噪声.............................................................................885.3.2 芯片外部开关噪声.............................................................................895.3.3 等效电感衡量SSN ..............................................................................905.4 旁路电容的特性和应用.............................................................................925.4.1 电容的频率特性.................................................................................935.4.3 电容的介质和封装影响.....................................................................955.4.3 电容并联特性及反谐振.....................................................................955.4.4 如何选择电容.....................................................................................975.4.5 电容的摆放及Layout ........................................................................99第六章 系统时序.................................................................................................1006.1 普通时序系统...........................................................................................1006.1.1 时序参数的确定...............................................................................1016.1.2 时序约束条件...................................................................................1066.2 源同步时序系统.......................................................................................1086.2.1 源同步系统的基本结构...................................................................1096.2.2 源同步时序要求...............................................................................110第七章 IBIS 模型................................................................................................1137.1 IBIS 模型的由来...................................................................................... 1137.2 IBIS 与SPICE 的比较.............................................................................. 1137.3 IBIS 模型的构成...................................................................................... 1157.4 建立IBIS 模型......................................................................................... 1187.4 使用IBIS 模型......................................................................................... 1197.5 IBIS 相关工具及链接..............................................................................120第八章 高速设计理论在实际中的运用.............................................................1228.1 叠层设计方案...........................................................................................1228.2 过孔对信号传输的影响...........................................................................1278.3 一般布局规则...........................................................................................1298.4 接地技术...................................................................................................1308.5 PCB 走线策略............................................................................................134

    标签: 信号完整性

    上传时间: 2014-05-15

    上传用户:dudu1210004

  • HyperLynx仿真软件在主板设计中的应用

    信号完整性问题是高速PCB 设计者必需面对的问题。阻抗匹配、合理端接、正确拓扑结构解决信号完整性问题的关键。传输线上信号的传输速度是有限的,信号线的布线长度产生的信号传输延时会对信号的时序关系产生影响,所以PCB 上的高速信号的长度以及延时要仔细计算和分析。运用信号完整性分析工具进行布线前后的仿真对于保证信号完整性和缩短设计周期是非常必要的。在PCB 板子已焊接加工完毕后才发现信号质量问题和时序问题,是经费和产品研制时间的浪费。1.1 板上高速信号分析我们设计的是基于PowerPC 的主板,主要由处理器MPC755、北桥MPC107、北桥PowerSpanII、VME 桥CA91C142B 等一些电路组成,上面的高速信号如图2-1 所示。板上高速信号主要包括:时钟信号、60X 总线信号、L2 Cache 接口信号、Memory 接口信号、PCI 总线0 信号、PCI 总线1 信号、VME 总线信号。这些信号的布线需要特别注意。由于高速信号较多,布线前后对信号进行了仿真分析,仿真工具采用Mentor 公司的Hyperlynx7.1 仿真软件,它可以进行布线前仿真和布线后仿真。

    标签: HyperLynx 仿真软件 主板设计 中的应用

    上传时间: 2013-11-04

    上传用户:herog3