虫虫首页|资源下载|资源专辑|精品软件
登录|注册

functional

  • LPC1700系列芯片勘误手册

    This errata sheet describes both the known functional problems and anydeviations from the electrical specifications known at the release date ofthis document.Each deviation is assigned a number and its history is tracked in a table atthe end of the document.

    标签: 1700 LPC 系列芯片 勘误

    上传时间: 2013-11-22

    上传用户:liangliang123

  • LPC1100系列微控制器勘误手册

    This errata sheet describes both the known functional problems and anydeviations from the electrical specifications known at the release date ofthis document.Each deviation is assigned a number and its history is tracked in a table atthe end of the document.

    标签: 1100 LPC 微控制器 勘误

    上传时间: 2014-12-30

    上传用户:thuyenvinh

  • 如何仿真IP核(建立modelsim仿真库完整解析)

      IP核生成文件:(Xilinx/Altera 同)   IP核生成器生成 ip 后有两个文件对我们比较有用,假设生成了一个 asyn_fifo 的核,则asyn_fifo.veo 给出了例化该核方式(或者在 Edit-》Language Template-》COREGEN 中找到verilog/VHDL 的例化方式)。asyn_fifo.v 是该核的行为模型,主要调用了 xilinx 行为模型库的模块,仿真时该文件也要加入工程。(在 ISE中点中该核,在对应的 processes 窗口中运行“ View Verilog functional Model ”即可查看该 .v 文件)。如下图所示。

    标签: modelsim 仿真 IP核 仿真库

    上传时间: 2013-10-20

    上传用户:lingfei

  • AXI总线功能模块v1.1产品简介(英文资料)

    AXI Bus functional Model v1.1 Product Brief.pdf

    标签: AXI 1.1 总线 产品简介

    上传时间: 2015-01-01

    上传用户:kbnswdifs

  • 采用TÜV认证的FPGA开发功能安全系统

    This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 图Figure 1. Local Safety System

    标签: FPGA 安全系统

    上传时间: 2013-11-14

    上传用户:zoudejile

  • 《器件封装用户向导》赛灵思产品封装资料

    Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.

    标签: 封装 器件 用户 赛灵思

    上传时间: 2013-11-20

    上传用户:不懂夜的黑

  • WP151 - Xilinx FPGA的System ACE配置解决方案

    Design techniques for electronic systems areconstantly changing. In industries at the heart of thedigital revolution, this change is especially acute.functional integration, dramatic increases incomplexity, new standards and protocols, costconstraints, and increased time-to-market pressureshave bolstered both the design challenges and theopportunities to develop modern electronic systems.One trend driving these changes is the increasedintegration of core logic with previously discretefunctions to achieve higher performance and morecompact board designs.

    标签: System Xilinx FPGA 151

    上传时间: 2013-11-22

    上传用户:kangqiaoyibie

  • XAPP380 -利用CoolRunner-II CPLD创建交叉点开关

      This application note provides a functional description of VHDL source code for a N x N DigitalCrosspoint Switch. The code is designed with eight inputs and eight outputs in order to targetthe 128-macrocell CoolRunner™-II CPLD device but can be easily expanded to target higherdensity devices. To obtain the VHDL source code described in this document, go to sectionVHDL Code, page 5 for instructions.

    标签: CoolRunner-II XAPP CPLD 380

    上传时间: 2013-10-26

    上传用户:kiklkook

  • SOC验证方法

    Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switching, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering themethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.

    标签: SOC 验证方法

    上传时间: 2013-11-18

    上传用户:m62383408

  • 如何仿真IP核(建立modelsim仿真库完整解析)

      IP核生成文件:(Xilinx/Altera 同)   IP核生成器生成 ip 后有两个文件对我们比较有用,假设生成了一个 asyn_fifo 的核,则asyn_fifo.veo 给出了例化该核方式(或者在 Edit-》Language Template-》COREGEN 中找到verilog/VHDL 的例化方式)。asyn_fifo.v 是该核的行为模型,主要调用了 xilinx 行为模型库的模块,仿真时该文件也要加入工程。(在 ISE中点中该核,在对应的 processes 窗口中运行“ View Verilog functional Model ”即可查看该 .v 文件)。如下图所示。

    标签: modelsim 仿真 IP核 仿真库

    上传时间: 2013-11-02

    上传用户:谁偷了我的麦兜