源代码\用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a,b,c依次序排列时,有13种不同的序列关系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要将n个数依序列,设计一个动态规划算法,计算出有多少种不同的序列关系, 要求算法只占用O(n),只耗时O(n*n).
上传时间: 2013-12-26
上传用户:siguazgb
c语言版的多项式曲线拟合。 用最小二乘法进行曲线拟合. 用p-1 次多项式进行拟合,p<= 10 x,y 的第0个域x[0],y[0],没有用,有效数据从x[1],y[1] 开始 nNodeNum,有效数据节点的个数。 b,为输出的多项式系数,b[i] 为b[i-1]次项。b[0],没有用。 b,有10个元素ok。
上传时间: 2014-01-12
上传用户:变形金刚
EM算法估计GMM的matlab版本的源代码,适合给类机器学习问题
上传时间: 2015-06-18
上传用户:lijianyu172
Sigmoid的参数求解matlab源代码,可以嵌入到各种机器学习问题中使用
上传时间: 2015-06-18
上传用户:Yukiseop
2。《遗传算法——理论、应用与软件实现》,王小平、曹立明编着 西安交通大学出版社 2002年第一版 本书全面系统地介绍了遗传算法的基本理论,重点介绍了遗传算法的经典应用和国内外的新发展。全书共分11章。第1章概述了遗传算法的产生与发展、基本思想、基本操作以及应用情况;第2章介绍了基本遗传算法;第3章论述了遗传算法的数学基础;第4章分析了遗传算法的多种改进方法;第5章初步介绍了进货计算理论体系;第6章介绍了遗传算法应用于数值优化问题;第7章介绍了遗传算法应用于组合优化问题;第8章介绍了遗传算法应用于机器学习;第9章讨论了遗传算法在智能控制中的应用;第10章讨论了遗传算法与人工生命研究的相关问题;第11章介绍了遗传算法在图像处理、模式识别中的应用。
上传时间: 2015-07-01
上传用户:dianxin61
8。《遗传算法及其应用》,陈国良等编着 人民邮电出版社 2001年第一版 本书系统全面地介绍了遗传算法的基本原理、设计方法及其并行实现,以及它在组合优化、机器学习、图像处理、过程控制、进化神经网络、模糊模式识别和人工生命等方面的应用。 本书可作为高等院校计算机、无线电电子学、自动控制、生物医学工程等有关专业高年级学生或研究生的教材和参考书,也可供从事人工智能、信息处理研究和应用的科技人员学习参考。
标签: 算法
上传时间: 2015-07-01
上传用户:er1219
基于内容的图像检索中的一些关键环节:特征提取:颜色直方图;纹理特征等 相似度:马氏距离,欧氏距离等 相关反馈:机器学习方法,如SVM,神经网络等 检索与分类:两个很相似的样本距离很小,虽然两个不相似的样本距离未必很大
上传时间: 2014-01-13
上传用户:小宝爱考拉
crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错。
上传时间: 2014-11-28
上传用户:宋桃子
支持向量机用于分类和回归,SVM的经典文献,搞机器学习的人必备文献。
上传时间: 2015-08-13
上传用户:ghostparker
《遗传算法--理论、应用与软件实现》配套源程序 遗传算法——理论、应用与软件实现》,王小平、曹立明编着 西安交通大学出版社 2002年第一版本书全面系统地介绍了遗传算法的基本理论,重点介绍了遗传算法的经典应用和国内外的新发展。全书共分11章。第1章概述了遗传算法的产生与发展、基本思想、基本操作以及应用情况;第2章介绍了基本遗传算法;第3章论述了遗传算法的数学基础;第4章分析了遗传算法的多种改进方法;第5章初步介绍了进货计算理论体系;第6章介绍了遗传算法应用于数值优化问题;第7章介绍了遗传算法应用于组合优化问题;第8章介绍了遗传算法应用于机器学习;第9章讨论了遗传算法在智能控制中的应用;第10章讨论了遗传算法与人工生命研究的相关问题;第11章介绍了遗传算法在图像处理、模式识别中的应用。
上传时间: 2015-09-14
上传用户:shanml