生源定位算法,包含SRP-PHAT(GCC-PHAT)、MUSIC、beamforming(波束形成)三类算法
上传时间: 2020-10-15
上传用户:
根据位置指纹室内定位算法的理念,提出了一种旨在减小计算量的定位方法,并将此方法应用于KNN算法中。以KNN算法为例,理论上分析了其计算量优化的情况,并在此优化算法的基础上,通过仿真比较了K的取值、AP节点的位置及数量对定位精度的影响。结果表明该算法不但能够保证位置指纹室内定位的精度,而且还能有效的减小定位过程中的计算量。该方法同样可以推广到其他位置指纹定位算法中,能在理论上解决位置指纹定位算法的计算量问题。
上传时间: 2013-10-20
上传用户:wuchunwu
基于信号到达角度(AOA)的定位算法是一种常见的无线传感器网络节点自定位算法,算法通信开销低,定位精度较高。由于各种原因,估测的多个节点位置可能存在不可靠位置,提出了一种改进的基于信号到达角的定位方法,通过过滤误差较大的估计位置,来提高定位的精度。仿真结果表明,本文提出的改进算法很好地提高了定位精度。
上传时间: 2013-12-19
上传用户:jennyzai
C++完美演绎 经典算法 如 /* 头文件:my_Include.h */ #include <stdio.h> /* 展开C语言的内建函数指令 */ #define PI 3.1415926 /* 宏常量,在稍后章节再详解 */ #define circle(radius) (PI*radius*radius) /* 宏函数,圆的面积 */ /* 将比较数值大小的函数写在自编include文件内 */ int show_big_or_small (int a,int b,int c) { int tmp if (a>b) { tmp = a a = b b = tmp } if (b>c) { tmp = b b = c c = tmp } if (a>b) { tmp = a a = b b = tmp } printf("由小至大排序之后的结果:%d %d %d\n", a, b, c) } 程序执行结果: 由小至大排序之后的结果:1 2 3 可将内建函数的include文件展开在自编的include文件中 圆圈的面积是=201.0619264
标签: my_Include include define 3.141
上传时间: 2014-01-17
上传用户:epson850
源代码\用动态规划算法计算序列关系个数 用关系"<"和"="将3个数a,b,c依次序排列时,有13种不同的序列关系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要将n个数依序列,设计一个动态规划算法,计算出有多少种不同的序列关系, 要求算法只占用O(n),只耗时O(n*n).
上传时间: 2013-12-26
上传用户:siguazgb
crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错。
上传时间: 2014-11-28
上传用户:宋桃子
crc任意位生成多项式 任意位运算 自适应算法 循环冗余校验码(CRC,Cyclic Redundancy Code)是采用多项式的 编码方式,这种方法把要发送的数据看成是一个多项式的系数 ,数据为bn-1bn-2…b1b0 (其中为0或1),则其对应的多项式为: bn-1Xn-1+bn-2Xn-2+…+b1X+b0 例如:数据“10010101”可以写为多项式 X7+X4+X2+1。 循环冗余校验CRC 循环冗余校验方法的原理如下: (1) 设要发送的数据对应的多项式为P(x)。 (2) 发送方和接收方约定一个生成多项式G(x),设该生成多项式 的最高次幂为r。 (3) 在数据块的末尾添加r个0,则其相对应的多项式为M(x)=XrP(x) 。(左移r位) (4) 用M(x)除以G(x),获得商Q(x)和余式R(x),则 M(x)=Q(x) ×G(x)+R(x)。 (5) 令T(x)=M(x)+R(x),采用模2运算,T(x)所对应的数据是在原数 据块的末尾加上余式所对应的数据得到的。 (6) 发送T(x)所对应的数据。 (7) 设接收端接收到的数据对应的多项式为T’(x),将T’(x)除以G(x) ,若余式为0,则认为没有错误,否则认为有错
上传时间: 2014-01-16
上传用户:hphh
1.有三根杆子A,B,C。A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,汉诺塔问题也是程序设计中的经典递归问题
上传时间: 2016-07-25
上传用户:gxrui1991
基因算法,用VC++或MATLAB,java等工具设计一程序计算任一个随机产生的DNA基因表达式的有效长度和值 设随机产生的基因表达式为: + Q - / b * b a Q b a a b a a b b a a a b
上传时间: 2014-01-09
上传用户:aa54
给定两个集合A、B,集合内的任一元素x满足1 ≤ x ≤ 109,并且每个集合的元素个数不大于105。我们希望求出A、B之间的关系。 任 务 :给定两个集合的描述,判断它们满足下列关系的哪一种: A是B的一个真子集,输出“A is a proper subset of B” B是A的一个真子集,输出“B is a proper subset of A” A和B是同一个集合,输出“A equals B” A和B的交集为空,输出“A and B are disjoint” 上述情况都不是,输出“I m confused!”
标签:
上传时间: 2017-03-15
上传用户:yulg