虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

Time-Delay

  • Asymptotic Stability and Boundedness of Delay Switching Diffusions

    Asymptotic Stability and Boundedness of Delay Switching Diffusions

    标签: Boundedness Asymptotic Diffusions Stability

    上传时间: 2013-12-21

    上传用户:电子世界

  • Transition-Time Optimization for Switched-Mode Dynamical Systems

    Transition-Time Optimization for Switched-Mode Dynamical Systems

    标签: Transition-Time Switched-Mode Optimization Dynamical

    上传时间: 2017-09-28

    上传用户:xinyuzhiqiwuwu

  • RTX-51 Real-Time翻译.pdf

    RTX-51 Real-Time翻译, RTX-51 Real-Time翻译 RTX-51 Real-Time翻译, RTX-51 Real-Time翻译 RTX-51 Real-Time翻译, RTX-51 Real-Time翻译 RTX-51 Real-Time翻译, RTX-51 Real-Time翻译 RTX-51 Real-Time翻译, RTX-51 Real-Time翻译 RTX-51 Real-Time翻译, RTX-51 Real-Time翻译

    标签: RTX-51

    上传时间: 2015-06-16

    上传用户:fatemeh

  • AVR单片机转速表

    /****************************************************************                  外部晶振8M                  PA0~3:四位数码管的位选                  PB0~7:数码管的8位段选                  外部中断0用于计数                  定时器0溢出中断的定时为1ms                  说明 :检测到水流较小时,继电器延时1秒关闭  ******************************************************************/                #include<iom16v.h>   #include<macros.h>   #define uchar unsigned char   #define uint unsigned int       char led_7[10]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};  //数码管段选        char position[4]={0xfe,0xfd,0xfb,0xf7};//数码管位选        uint sumnum=0;  //用于记录1000ms内进入中断的次数        uint time=0;   //记录进入比较定时器0的次数        uint num=0;     //记录1ms内进入中断的次数        uint count=0;   //进入外部中断0的次数        uchar flag;        uint sumnum1;   //记录100ms内的数目       /***************************函数声明***************************/        void delay();        void display(uint m );        void init();        void init_0();        void init_2();    void _delay_us(uint l)   {        unsigned int i;        for(i=0;i<l;i++)        {        asm("nop");        }   }           /**************************主函数***********************************/       void main()   {        init();        init_0();        init_2();        while(sumnum<5)        {           PORTD=0XBF;           segdisplay(sumnum1);        }       while(1)       {           segdisplay(sumnum1);       }           }        /*************************扫描数码管时的延时函数*********************/        void delay()    {         uchar i,j;         for(i=6;i>0;i--)         for(j=225;j>0;j--);    }        /************************数码管显示函数*****************************/       void segdisplay( int temp)        {         int seg[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};         int temp1,temp2,temp3,temp4;         temp1=temp/1000;         temp2=(temp/100)%10;         temp3=(temp/10)%10;         temp4=temp%10;         DDRB=0xff;         DDRA|=0x0f;           PORTA=~BIT(3);           PORTB=seg[temp1];           _delay_us(100);           PORTA=~BIT(2);           PORTB=seg[temp2];           _delay_us(100);           PORTA=~BIT(1);           PORTB=seg[temp3];           _delay_us(100);           PORTA=~BIT(0);           PORTB=seg[temp4];           _delay_us(100);       }        /***********************管脚初始化函数*********************/        void init()    {                      DDRD|=0X40;   //PD4 设置为输出             PORTD=0XBF;                DDRA=0XFF;             DDRB=0XFF;             PORTA=0XFF;             PORTB=0XFF;    }        /***********************外部中断0初始化*********************/        void init_0()    {         MCUCR=0X02;   //INT0为下降沿触发         GICR=0X40;   //使能INT0中断         SREG=0X80;  //使能总中断    }        /**********************定时器2初始化***********************/        void init_2()    {         TCCR0=0x03;   // 内部时钟,64 分频(8M/64=125KHz)          TCNT0=0x83;   //装初值           TIMSK=0x01;   // 允许 T/C0溢出中断中断      }          /***********************外部中断0子函数********************/        #pragma interrupt_handler int0_isr:2        void int0_isr(void)        {             count++;        }        /*********************定时计数器0溢出中断子函数*****************/       #pragma interrupt_handler int0_over:10        void int0_over(void)       {           TCNT0=0x83;   //重装初值            if((time%100) == 0)               sumnum1 = num;           if(time == 1000)           {               sumnum=num;               if(sumnum<10)               {                                      if((flag==1)&&(sumnum<10))                   {                       PORTD=0XFF;                       flag=0;                   }                                      flag++;               }               else                       PORTD=0XBF;               num=0;               time=0;           }           num+=count;           count=0;           ++time;        } 

    标签: C语言

    上传时间: 2016-03-09

    上传用户:彦 yan

  • bios cmos time read and set

    bios cmos time read and set-use borlandc

    标签: bios cmos time read and set

    上传时间: 2017-05-04

    上传用户:david10274

  • Complex Orthogonal Space-Time Processing

    Multiple-Input Multiple-Output (MIMO) systems have recently been the subject of intensive consideration in modem wireless communications as they offer the potential of providing high capacity, thus unleashing a wide range of applications in the wireless domain. The main feature of MIMO systems is the use of space-time processing and Space-Time Codes (STCs). Among a variety of STCs, orthogonal Space-Time Block Codes (STBCs) have a much simpler decoding method, compared to other STCs

    标签: Orthogonal Space-Time Processing Complex

    上传时间: 2020-05-26

    上传用户:shancjb

  • Continuous-Time+Digital+Front-Ends

    The book you’re holding, physically or electronically, is the result of a very interesting, challenging but also rewarding research project. The research was carried out in different contexts and cooperations but it was centered around the following question: how can we make the RF transmitters of our modern com- munication systems (WiFi, GSM, LTE, and so on) more flexible and more efficient at the same time.

    标签: Continuous-Time Front-Ends Digital

    上传时间: 2020-05-27

    上传用户:shancjb

  • IP,+Ethernet+and+MPLS+Networks+

    This book addresses two aspects of network operation quality; namely, resource management and fault management. Network operation quality is among the functions to be fulfilled in order to offer quality of service, QoS, to the end user. It is characterized by four parameters: – packet loss; – delay; – jitter, or the variation of delay over time; – availability. Resource management employs mechanisms that enable the first three parameters to be guaranteed or optimized. Fault management aims to ensure continuity of service.

    标签: Ethernet Networks MPLS and IP

    上传时间: 2020-05-27

    上传用户:shancjb

  • Space-Time+Processing

    Driven by the desire to boost the quality of service of wireless systems closer to that afforded by wireline systems, space-time processing for multiple-input multiple-output (MIMO) wireless communications research has drawn remarkable interest in recent years. Excit- ing theoretical advances, complemented by rapid transition of research results to industry products and services, have created a vibrant and growing area that is already established by all counts. This offers a good opportunity to reflect on key developments in the area during the past decade and also outline emerging trends.

    标签: Space-Time Processing

    上传时间: 2020-06-01

    上传用户:shancjb

  • Space-Time+Processing+for+Wireless+Communications

    In this thesis several asp ects of space-time pro cessing and equalization for wire- less communications are treated. We discuss several di?erent metho ds of improv- ing estimates of space-time channels, such as temp oral parametrization, spatial parametrization, reduced rank channel estimation, b o otstrap channel estimation, and joint estimation of an FIR channel and an AR noise mo del. In wireless commu- nication the signal is often sub ject to intersymb ol interference as well as interfer- ence from other users. 

    标签: Communications Space-Time Processing Wireless for

    上传时间: 2020-06-01

    上传用户:shancjb