A programmable digital signal processor (PDSP) is a special-purpose microprocessor with specialized architecture and instruction set for implementing DSP algorithms. Typical architectural features include multiple memory partitions (onchip, off-chip, data memory, program memory, etc.), multiple (generally pipelined) arithmetic and logic units (ALUs), nonuniform register sets, and extensive hardware numeric support [1,2]. Single-chip PDSPs have become increasingly popular for real-time DSP applications [3,4].
标签: special-purpose microprocessor programmable specialized
上传时间: 2017-08-13
上传用户:脚趾头
Adaptive Coordinated Medium Access Control (AC-MAC), a contention-based Medium Access Control protocol for wireless sensor networks. To handle the load variations in some real-time sensor applications, ACMAC introduces the adaptive duty cycle scheme within the framework of sensor-MAC (S-MAC).
标签: Control Access Medium contention-based
上传时间: 2014-12-22
上传用户:gundan
A few years ago I became interested in first person shooter games and in particular how the world levels are created and rendered in real time. At the same time I found myself in between jobs and so I embarked on an effort to learn about 3D rendering with the goal of creating my own 3D rendering engine. Since I am a developer and not an artist I didn’t have the skills to create my own models, levels, and textures. So I decided to attempt to write a rendering engine that would render existing game levels. I mainly used information and articles I found on the web about Quake 2, Half Life, WAD and BSP files. In particular I found the Michael Abrash articles that he wrote for Dr. Dobbs magazine while working at Id to be very illuminating.
标签: interested particular shooter became
上传时间: 2013-12-13
上传用户:hanli8870
Guided vehicles (GVs) are commonly used for the internal transportation of loads in warehouses, production plants and terminals. These guided vehicles can be routed with a variety of vehicle dispatching rules in an attempt to meet performance criteria such as minimizing the average load waiting times. In this research, we use simulation models of three companies to evaluate the performance of several real-time vehicle dispatching rules, in part described in the literature. It appears that there is a clear difference in average load waiting time between the different dispatching rules in the different environments. Simple rules, based on load and vehicle proximity (distance-based) perform best for all cases. The penalty for this is a relatively high maximum load waiting time. A distance-based rule with time truncation, giving more priority to loads that have to wait longer than a time threshold, appears to yield the best possible overall performance. A rule that particularly considers load-waiting time performs poor overall. We also show that using little pre-arrival information of loads leads to a significant improvement in the performance of the dispatching rules without changing their performance ranking.
标签: Testing and classifying vehicle dispatching rules in three real-world settings
上传时间: 2016-04-01
上传用户:五块钱的油条
大名鼎鼎的嵌入式操作系统vxworks的完整的源代码,支持多种体系结构的嵌入式处理器,如arm,x86,i960,mc68k,mips,ppc,sparc等,包含完整的实时多任务处理及网络tcpip,dhcp,rip等协议,tffs文件系统,以及各种硬件驱动程序如usb--All the source code of Famous vxwork Embedded operating system , it supports the Embedded processor of many kinds of systems architecture, such as arm,x86,I9600,mc68k,Mips,ppc,sparc etc, it includes entire Real-Time & multi_tasks processing and some network protocols of tcpip,dhcp,rip, tfffs file system,and various kinds of hardware drivers (eg usb) etc
标签: vxworks
上传时间: 2016-04-01
上传用户:dragonman
实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); }
上传时间: 2016-06-27
上传用户:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
In the hit CBS crime show Person of Interest, which debuted in 2011, the two heroes—one a former Central Intelligence Agency agent and the other a billionaire technology genius—work together using the ubiquitous surveillance system in New York City to try to stop violent crime. It’s referred to by some as a science fiction cop show. But the use of advanced technology for crime analysis in almost every major police department in the United States may surpass what’s depicted on TV crime dramas such as Person of Interest. Real-time crime cen- ters (RTCCs) are a vital aspect of intelligent policing. Crime analysis is no longer the stuff of science fiction. It’s real.
标签: Intelligence Analysis Crime
上传时间: 2020-05-25
上传用户:shancjb
Mobile communication devices like smart phones or tablet PCs enable us to consume information at every location and at every time. The rapid development of new applications and new services and the demand to access data in real time create an increasing throughput demand. The data have to be transmitted reliably to ensure the desired quality of service. Furthermore, an improved utilization of the bandwidth is desired to reduce the cost of transmission.
标签: Architectures Processing Baseband Signal for
上传时间: 2020-05-26
上传用户:shancjb
Over the past few decades, wireless communications and networking have witnessed an unprecedented growth, and have become pervasive much sooner than anyone could have predicted. For example, cellular wireless networks are expected to become the dominant and ubiquitous telecommunication means in the next few decades. The widespread success of cellular and WLAN systems prompts the development of advanced wireless systems to provide access to information services beyond voice such as telecommuting, video conferencing, interactive media, real-time internet gaming, and so on, anytime and anywhere.
标签: Compressive Networks Wireless Sensing for
上传时间: 2020-05-27
上传用户:shancjb