Goodrich版算法设计与基础
标签: 算法
上传时间: 2016-02-09
上传用户:半年不见
调制解调课程设计 16QAM调制解调代码。包括星座图,频谱分析,误码率分析。-16QAM modulation and demodulation curriculum design code modulation and demodulation. Including constellation, spectrum analysis, bit error rate analysis.
上传时间: 2016-05-02
上传用户:ylqylq
一本从数据结构的基础到深入剖释的书籍,值得收藏。另一方面,为了获取积分才把珍藏的英文版放上来。
标签: Structures Algorithm Analysis Data and
上传时间: 2016-07-26
上传用户:cee16
LDO 的环路分析,对涉及、分析LDO的工作原理有帮助。
上传时间: 2017-09-09
上传用户:banjieshubi
The 4.0 kbit/s speech codec described in this paper is based on a Frequency Domain Interpolative (FDI) coding technique, which belongs to the class of prototype waveform Interpolation (PWI) coding techniques. The codec also has an integrated voice activity detector (VAD) and a noise reduction capability. The input signal is subjected to LPC analysis and the prediction residual is separated into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW) components. The SEW magnitude component is quantized using a hierarchical predictive vector quantization approach. The REW magnitude is quantized using a gain and a sub-band based shape. SEW and REW phases are derived at the decoder using a phase model, based on a transmitted measure of voice periodicity. The spectral (LSP) parameters are quantized using a combination of scalar and vector quantizers. The 4.0 kbits/s coder has an algorithmic delay of 60 ms and an estimated floating point complexity of 21.5 MIPS. The performance of this coder has been evaluated using in-house MOS tests under various conditions such as background noise. channel errors, self-tandem. and DTX mode of operation, and has been shown to be statistically equivalent to ITU-T (3.729 8 kbps codec across all conditions tested.
标签: frequency-domain interpolation performance Design kbit_s speech coder based and of
上传时间: 2018-04-08
上传用户:kilohorse
Test Analysis Software
标签: NDepend
上传时间: 2018-07-28
上传用户:teomondo
统计领域经典书籍,贝叶斯数据分析(英文原版),第三版
上传时间: 2018-10-23
上传用户:fuchuchaoyue
使用matlab实现gibbs抽样,MCMC: The Gibbs Sampler 多元高斯分布的边缘概率和条件概率 Marginal and conditional distributions of multivariate normal distribution
上传时间: 2019-12-10
上传用户:real_
深度学习,神经网络,卷积神经网络 Analysis of Deep Learning Models using CNN Techniques
上传时间: 2020-01-02
上传用户:wzy2020
压缩包中有5篇论文,分别为《Data-driven analysis of variables and dependencies in continuous optimization problems and EDAs》这是一篇博士论文,较为详细的介绍了各种EDA算法;《Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm》《Enhancing Gaussian Estimation of Distribution Algorithm by Exploiting Evolution Direction with Archive》《Niching an Archive-based Gaussian Estimation of Distribution Algorithm via Adaptive Clustering》《Supplementary material for Enhancing Gaussian Estimation of Distribution Algorithm by Exploiting Evolution Direction with Archive》《基于一般二阶混合矩的高斯分布估计算法》介绍了一些基于EDA的创新算法。
上传时间: 2020-05-25
上传用户:duwenhao