虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

M<b>Use</b>

  • n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional inde

    n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab5 and type "dbnrbpf" for the demo.

    标签: Rao-Blackwellised conditional filtering particle

    上传时间: 2013-12-17

    上传用户:zhaiyanzhong

  • On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carl

    On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    标签: demonstrates sequential Selection Bayesian

    上传时间: 2016-04-07

    上传用户:lindor

  • In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional ind

    In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab5 and type "dbnrbpf" for the demo.

    标签: Rao-Blackwellised conditional filtering particle

    上传时间: 2013-12-14

    上传用户:小儒尼尼奥

  • This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps t

    This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    标签: sequential reversible algorithm nstrates

    上传时间: 2014-01-18

    上传用户:康郎

  • This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hier

    This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    标签: reversible algorithm the nstrates

    上传时间: 2014-01-08

    上传用户:cuibaigao

  • Implement the following integer methods: a) Method celsius returns the Celsius equivalent of a Fahr

    Implement the following integer methods: a) Method celsius returns the Celsius equivalent of a Fahrenheit calculation celsius = 5.0 / 9.0 * ( fahrenheit - 32 ) b) Method fahrenheit returns the Fahrenheit equivalent of a Celsius the calculation fahrenheit = 9.0 / 5.0 * celsius + 32 c) Use the methods from parts (a) and (b) to write an application either to enter a Fahrenheit temperature and display the Celsius or to enter a Celsius temperature and display the Fahrenheit equivalent.

    标签: equivalent Implement the following

    上传时间: 2014-01-19

    上传用户:jackgao

  • 根据DFT的基二分解方法

    根据DFT的基二分解方法,可以发现在第L(L表示从左到右的运算级数,L=1,2,3…M)级中,每个蝶形的两个输入数据相距B=2^(L-1)个点,同一旋转因子对应着间隔为2^L点的2^(M-L)个蝶形。从输入端开始,逐级进行,共进行M级运算。在进行L级运算时,依次求出个2^(L-1)不同的旋转因子,每求出一个旋转因子,就计算完它对应的所有的2^(M-L)个蝶形。因此我们可以用三重循环程序实现FFT变换。同一级中,每个蝶形的两个输入数据只对本蝶形有用,而且每个蝶形的输入、输出数据节点又同在一条水平线上,所以输出数据可以立即存入原输入数据所占用的存储单元。这种方法可称为原址计算,可节省大量的存储单元。附件包含算法流程图和源程序。

    标签: DFT 分解方法

    上传时间: 2013-12-25

    上传用户:qiao8960

  • 基于J2EE的物流信息系统的设计与实现 介绍了J2EE 体系结构、Mv c模式等相关概念和技术

    基于J2EE的物流信息系统的设计与实现 介绍了J2EE 体系结构、Mv c模式等相关概念和技术,并重点探讨了 目 前比 较受欢迎的三种开源框架( s t r ut s框架、S Pr i n g框架和H i b e m a t e 框架)。 分析了他们的体系结构、 特点和优缺点。 根据J ZE E的分层结构,结合We b应用 的特点, 将三种框架进行组合设计, 即表现层用S t r ut s框架、 业务逻辑层用S P ri n g 框架、持久层用比b ema t e 框架,从而来构建物流信息系统。这种整合框架使各 层相对独立, 减少各层之间的祸合程度,同时加快了系统的开发过程,增强了系 统的可维护性和可扩展性,初步达到了分布式物流信息系统的设计目标。 经过以上分析,结合物流系统的业务需求,进行了相关的实现。最后,系统 运用先进的A ja x技术来增强Ui层与服务器的异步通信能力, 使用户体验到动态 且响应灵 敏的桌 面级w e b应用程序。 通过江联公司的试运行结果,系统达到了 渝眯。 并 且 对 江 联 公 司 提 出 了 基 于 R F I D 的 解 决 方 案 的 实 施 计 划 。

    标签: J2EE 物流信息 模式

    上传时间: 2016-06-01

    上传用户:ynsnjs

  • 基于J2EE技术的网上商城系统构建 本课题以国家8 6 3引导项目

    基于J2EE技术的网上商城系统构建 本课题以国家8 6 3引导项目 , 暨新疆自治区高新计划项目 — 广汇美居物流园网上 商城系统为背景。旨 在利用先进的系统建模思想以及当前流行的We b编程技术,将迭 代式、以用户需求为驱动和以构架为中心的R U P统一开发过程的系统建模思想应用到 电子商务系统模型的需求分析和设计的各个阶段, 完整地实现整个系统的建模过程。 在 此基础上对系统实现的关键技术问题:数据库的并发访问,MV C模式的应用以及统计 信息的图表显示等关键技术进行了具体的分析和实现。 本文利用I nt e 川 e 吸 的强大功能,借鉴国内外电子商务方面的相关经验,分析虚拟店 铺,网上商城及网上拍卖的功能结构和实现方式, 为广汇美居物流园的商户搭建网上虚 拟店铺,网上商城及网上商品竟拍系统平台。该系统经过近半年的使用,实际应用效果 较好。采用的R U P开发方法和M V c的设计模式使系统的灵活性和可扩展性大大增强。

    标签: J2EE 网上商城 系统构建

    上传时间: 2014-12-03

    上传用户:edisonfather

  • 对于给定的一组进程

    对于给定的一组进程,采用优先级加时间片轮转法进行调度。设有一个就绪队列,就绪进程按优先数(优先数范围0-100)由小到大排列(优先数越小,级别越高)。当某一进程运行完一个时间片后,其优先级应下调(如优先数加3),试对如下给定的一组进程给出其调度顺序。每当结束一进程时要给出当前系统的状态(即显示就绪队列)。这里,进程可用进程控制块(PCB)表示为如右表所示。 进程名 A B C D E F G H J K L M 到达时间 0 1 2 3 6 8 12 12 12 18 25 25 服务时间 6 4 10 5 1 2 5 10 4 3 15 8

    标签: 进程

    上传时间: 2014-01-13

    上传用户:chfanjiang