This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hier - 免费下载

数学计算资源 文件大小:341 K

📋 资源详细信息

文件格式
RAR
所属分类
上传用户
上传时间
文件大小
341 K
所需积分
2 积分
推荐指数
⭐⭐⭐⭐⭐ (5/5)

💡 温馨提示:本资源由用户 wc7707399 上传分享,仅供学习交流使用。如有侵权,请联系我们删除。

资源简介

This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

源码文件列表

📂 共 2 个源码文件 点击文件名可在线查看源代码

💡
温馨提示:点击文件名或"查看源码"按钮可在线浏览源代码,支持语法高亮显示。

立即下载此资源

提示:下载后请用压缩软件解压,推荐使用 WinRAR 或 7-Zip

资源说明

📥 下载说明

  • 下载需消耗 2积分
  • 24小时内重复下载不扣分
  • 支持断点续传
  • 资源永久有效

📦 使用说明

  • 下载后用解压软件解压
  • 推荐 WinRAR 或 7-Zip
  • 如有密码请查看说明
  • 解压后即可使用

🎁 积分获取

  • 上传资源获得积分
  • 每日签到免费领取
  • 邀请好友注册奖励
  • 查看详情 →

相关标签

点击标签查看更多相关资源:

相关资源推荐