We’re living through exciting times. The landscape of what computers can do is changing by the week. Tasks that only a few years ago were thought to require higher cognition are getting solved by machines at near-superhuman levels of per- formance. Tasks such as describing a photographic image with a sentence in idiom- atic English, playing complex strategy game, and diagnosing a tumor from a radiological scan are all approachable now by a computer. Even more impressively, computers acquire the ability to solve such tasks through examples, rather than human-encoded of handcrafted rules.
标签: Deep-Learning-with-PyTorch
上传时间: 2020-06-10
上传用户:shancjb
Although state of the art in many typical machine learning tasks, deep learning algorithmsareverycostly interms ofenergyconsumption,duetotheirlargeamount of required computations and huge model sizes. Because of this, deep learning applications on battery-constrained wearables have only been possible through wireless connections with a resourceful cloud. This setup has several drawbacks. First, there are privacy concerns. Cloud computing requires users to share their raw data—images, video, locations, speech—with a remote system. Most users are not willing to do this. Second, the cloud-setup requires users to be connected all the time, which is unfeasible given current cellular coverage. Furthermore, real-time applications require low latency connections, which cannot be guaranteed using the current communication infrastructure. Finally, wireless connections are very inefficient—requiringtoo much energyper transferredbit for real-time data transfer on energy-constrained platforms.
标签: Embedded_Deep_Learning Algorithms
上传时间: 2020-06-10
上传用户:shancjb
This design uses Common-Emitter Amplifier (Class A) with 2N3904 Bipolar Junction Transistor. Use “Voltage Divider Biasing” to reduce the effects of varying β (= ic / ib) (by holding the Base voltage constant) Base Voltage (Vb) = Vcc * [R2 / (R1 + R2)] Use Coupling Capacitors to separate the AC signals from the DC biasing voltage (which only pass AC signals and block any DC component). Use Bypass Capacitor to maintain the Q-point stability. To determine the value of each component, first set Q-point close to the center position of the load line. (RL is the resistance of the speaker.)
上传时间: 2020-11-27
上传用户:
General Design Specification:1. AC Input Range 180-264Vac, Isolated ac-dc offline, 12LEDS,Output 700mA2. Intelligent wall dimmer detections(Leading-edge dimmer , Trailing-edgedimmer , No-dimmer)3. Multiple dimming control scheme4. Wide dimming range from 1% up to 100%5. No visible flicker6. Resonant control to achieve high efficiency7. High Power Factor, 0.9 without dimmer8. Temperature degrade control to adjust the LED9. Primary-only Sensing eliminates opto-isolator feedback and simplifies design
标签: iw3617
上传时间: 2021-12-03
上传用户:canderile
The PW3130 series product is a high integration solution for lithium-lion/polymer batteryprotection.PW3130 contains advanced power MOSFET, high-accuracy voltage detection circuits anddelay circuits. PW3130 is put into an ultra-small SOT23-5 package and only one external componentmakes it an ideal solution in limited space of battery pack. PW3130 has all the protection functionsrequired in the battery application including overcharging, overdischarging, overcurrent and loadshort circuiting protection etc. The accurate overcharging detection voltage ensures safe and fullutilization charging.The low standby current drains little current from the cell while in storage. Thedevice is not only targeted for digital cellular phones, but also for any other Li-Ion and Li-Polybattery-powered information appliances requiring long-term battery life
标签: pw3130
上传时间: 2022-02-11
上传用户:fliang
Agilent 34401A Service Guide.pdfIEC Measurement Category II includes electrical devices connected to mains at an outlet on a branch circuit. Such devices include most small appliances, test equipment, and other devices that plug into a branch outlet or socket. The 34401A may be used to make measurements with the HI and LO inputs connected to mains in such devices, or to the branch outlet itself (up to 300 VAC). However, the 34401A may not be used with its HI and LO inputs connected to mains in permanently installed electrical devices such as the main circuit-breaker panel, sub-panel disconnect boxes, or permanently wired motors. Such devices and circuits are subject to overvoltages that may exceed the protection limits of the 34401A. Note: Voltages above 300 VAC may be measured only in circuits that are isolated from mains. However, transient overvoltages are also present on circuits that are isolated from mains. The Agilent 34401A are designed to safely withstand occasional transient overvoltages up to 2500 Vpk. Do not use this equipment to measure circuits where transient overvoltages could exceed this level. Additional Notices Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC This product complies with the WEEE Directive (2002/96/EC) marking requirement. The affixed product label (see below) indicates that you must not discard this electrical/electronic product in domestic household waste. Product Category: With reference to the equipment types in the WEEE directive Annex 1, this product is classified as a "Monitoring and Control instrumentation" product. Do not dispose in domestic household waste. To return unwanted products, contact your local Agilent office, or see www.agilent.com/environment/product for more information. Agilent 34138A Test Lead Set The Agilent 34401A is compatible with the Agilent 34138A Test Lead Set described below. Test Lead Ratings Test Leads - 1000V, 15A Fine Tip Probe Attachments - 300V, 3A Mini Grabber Attachment - 300V, 3A SMT Grabber Attachments - 300V, 3A Operation The Fine Tip, Mini Grabber, and SMT Grabber attachments plug onto the probe end of the Test Leads. Maintenance If any portion of the Test Lead Set is worn or damaged, do not use. Replace with a new Agilent 3413
标签: agilent
上传时间: 2022-02-20
上传用户:
CH341系列编程器芯片usb转串口Altium Designer AD原理图库元件库CSV text has been written to file : 1.9 - CH341系列编程器芯片.csvLibrary Component Count : 56Name Description----------------------------------------------------------------------------------------------------CH311Q PC debug port monitorCH331T Mini USB Disk ControllerCH340G CH340H USB to TTL Serial / UART, USB to IrDACH340T USB to TTL Serial / UART, USB to IrDACH340R USB to IrDA, USB to RS232 SerialCH340S_P USB to Print Port / ParallelCH340S_S USB to TTL Serial / UART, pin compatible with CH341CH341A_S USB to TTL Serial / UART / I2C/IICCH341S_P USB to Print Port / ParallelCH341A_P USB to Print Port / ParallelCH341S_S USB to TTL Serial / UARTCH341S_X USB to EPP Parallel / SPI / I2C/IICCH341A_X USB to EPP Parallel / SPI / I2C/IICCH341T USB to TTL Serial / UART / I2C/IICCH345T USB to MidiCH352L_M PCI to 8255 mode 2 Parallel for MCU and 16C550 UART / IrDACH352L_P PCI to Print Port / Parallel and 16C550 UART / IrDACH352L_S PCI to Dual 16C550 UART, TTL Serial*2 / IrDA*1CH362L PCI Device / Slave only for RAM / Expansion ROMCH364F Member of CH364 chipsetsCH364P PCI Device / Slave Embedded Flash ROM, for Expansion ROMCH365P PCI Device / Slave, for I/O port or RAM / ROMCH372T USB Device / Slave for MCU, ParallelCH372A USB Device / Slave for MCU, ParallelCH372V USB Device / Slave for MCU, ParallelCH374S USB Host & Device / Slave for MCU, parallel / SPICH374T USB Host & Device / Slave for MCU, parallel / SPICH375S USB Host & Device / Slave for MCU, parallel / UART SerialCH375A USB Host & Device / Slave for MCU, parallel / UART SerialCH375V USB Host & Device / Slave for MCU, parallel / UART SerialCH411G FDC MFM encode and decodeCH421A Dual port bufferCH421S Dual port bufferCH423D I2C/IIC I/O expander, 16 GPO + 8 GPIO, 128 LEDs DriveCH423S I2C/IIC I/O expander, 16 GPO + 8 GPIO, 128 LEDs DriveCH423D_D I2C/IIC I/O expander, 16 GPO + 8 GPIO, 128 LEDs DriveCH423S_D I2C/IIC I/O expander, 16 GPO + 8 GPIO, 128 LEDs DriveCH423G I2C/IIC I/O expander, 6 GPO + 5 GPIOCH432Q Dual 16C550 UART with IrDA, parallel / SPICH432T SPI Dual 16C550 UART with IrDACH450K 6 Digits / 48 LEDs Drive & 8x6 Keyboard, I2C/IICCH450H 6 Digits / 48 LEDs Drive & 8x6 Keyboard, I2C/IICCH450L 8 Digits / 64 LEDs Drive & 8x8 Keyboard, I2C/IICCH451L 8 Digits / 64 LEDs Drive & 8x8 Keyboard, 4 Wire Interface, SPICH451S 8 Digits / 64 LEDs Drive & 8x8 Keyboard, 4 Wire Interface, SPICH451D 8 Digits / 64 LEDs Drive & 8x8 Keyboard, 4 Wire Interface, SPICH452L_2 8 Digits / 64 LEDs Drive & 8x8 Keyboard, I2C/IICCH452L_4 8 Digits / 64 LEDs Drive & 8x8 Keyboard, 4 Wire Interface, SPICH452S_2 8 Digits / 64 LEDs Drive & 8x8 Keyboard, I2C/IICCH452S_4 8 Digits / 64 LEDs Drive & 8x8 Keyboard, 4 Wire Interface, SPICH453S 16 Digits / 128 LEDs Drive, I2C/IICCH453D 16 Digits / 128 LEDs Drive, I2C/IICPCI 32Bit PCI Bus, simple / short cardPCI32 32Bit PCI BusUSB USB Port
标签: ch341 编程芯片 usb 串口 altium designer
上传时间: 2022-03-13
上传用户:
电子书-RTL Design Style Guide for Verilog HDL540页A FF having a fixed input value is generated from the description in the upper portion of Example 2-21. In this case, ’0’ is output when the reset signal is asynchronously input, and ’1’ is output when the START signal rises. Therefore, the FF data input is fixed at the power supply, since the typical value ’1’ is output following the rise of the START signal. When FF input values are fixed, the fixed inputs become untestable and the fault detection rate drops. When implementing a scan design and converting to a scan FF, the scan may not be executed properl not be executed properly, so such descriptions , so such descriptions are not are not recommended. recommended.[1] As in the lower part of Example 2-21, be sure to construct a synchronous type of circuit and ensure that the clock signal is input to the clock pin of the FF. Other than the sample shown in Example 2-21, there are situations where for certain control signals, those that had been switched due to the conditions of an external input will no longer need to be switched, leaving only a FF. If logic exists in a lower level and a fixed value is input from an upper level, the input value of the FF may also end up being fixed as the result of optimization with logic synthesis tools. In a situation like this, while perhaps difficult to completely eliminate, the problem should be avoided as much as possible.
标签: RTL verilog hdl
上传时间: 2022-03-21
上传用户:canderile
针对嵌入式产品程序更新问题,提出了一种基于IAP技术的STM32单片机在线固件升级方案,设计了STM32单片机最小系统硬件电路和USB转串口通信电路,并给出了Bootloader程序、APP程序、PC上机程序的实现流程.实验结果表明,该方案具有简单实用、稳定性高、维护成本低和设备使用效率高的特点,适用于嵌入式产品升级.For the problem of updating embedded products program,an online firmware upgrade scheme of STM32 single chip microcomputer based on IAP technology is proposed.This scheme not only elaborates the principle of IAP technology in detail but also provides the design of the minimum system hardware circuit of STM32 MCU,the design of USB for serial communication circuit,and the implementation flow of Bootloader program,APP program and PC program.The experiment results show that the scheme is simple,practical and highly stable.In addition,it can be used to actual embedded product upgrading,significantly reducing maintenance costs and improving the efficiency of equipment.
上传时间: 2022-03-25
上传用户:
This manual documents the Microcontroller profile of version 7 of the ARM® Architecture, the ARMv7-M architecture profile. For short definitions of all the ARMv7 profiles see About the ARMv7 architecture, and architecture profiles on page A1-20.ARMv7 is documented as a set of architecture profiles. The profiles are defined as follows: ARMv7-A The application profile for systems supporting the ARM and Thumb instruction sets, and requiring virtual address support in the memory management model. ARMv7-R The realtime profile for systems supporting the ARM and Thumb instruction sets, and requiring physical address only support in the memory management model ARMv7-M The microcontroller profile for systems supporting only the Thumb instruction set, and where overall size and deterministic operation for an implementation are more important than absolute performance. While profiles were formally introduced with the ARMv7 development, the A-profile and R-profile have implicitly existed in earlier versions, associated with the Virtual Memory System Architecture (VMSA) and Protected Memory System Architecture (PMSA) respectively.
标签: arm
上传时间: 2022-06-02
上传用户: