虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

Image-<b>Descriptions</b>-for-Browsing-a

  • Carrier-phase synchronization can be approached in a general manner by estimating the multiplicativ

    Carrier-phase synchronization can be approached in a general manner by estimating the multiplicative distortion (MD) to which a baseband received signal in an RF or coherent optical transmission system is subjected. This paper presents a unified modeling and estimation of the MD in finite-alphabet digital communication systems. A simple form of MD is the camer phase exp GO) which has to be estimated and compensated for in a coherent receiver. A more general case with fading must, however, allow for amplitude as well as phase variations of the MD. We assume a state-variable model for the MD and generally obtain a nonlinear estimation problem with additional randomly-varying system parameters such as received signal power, frequency offset, and Doppler spread. An extended Kalman filter is then applied as a near-optimal solution to the adaptive MD and channel parameter estimation problem. Examples are given to show the use and some advantages of this scheme.

    标签: synchronization Carrier-phase multiplicativ approached

    上传时间: 2013-11-28

    上传用户:windwolf2000

  • 古典密码中

    古典密码中,主要的思想为移位算法及置换算法。 1.移位密码 密钥K为整数,且取值空间为0到25;加密函数:x = x + k (mod 26);解密函数:x = x - k (mod 26)。当K=3时,为凯撒密码。 2.仿射密码 密钥对由a、b组成,整数a满足 gcd(a, 26) = 1,整数b的取值空间为0到25;加密函数:x = ax + b(mod 26);解密函数:x = a*y - a*b (mod 26)。当a=1,b=3时,为凯撒密码。 3.维吉尼亚密码 首先确定密钥长度(本例中密钥只采取个位数字,所以取决于输入密钥的长度),然后输入满足这个长度的向量;加密:取明文第一个字母并将之移k1位,这里k1=1,第二个字母移k2位,k2=2,一旦到了密钥末尾,又从头开始。 4.换位密码 首先确定密钥长度,输入长度为5的0到4的整数序列,将明文分成每5个字母一组,每组字母按照密钥进行换位。

    标签: 密码

    上传时间: 2016-02-09

    上传用户:jqy_china

  • 编程题(15_01.c) 结构 struct student { long num char name[20] int score struct student *

    编程题(15_01.c) 结构 struct student { long num char name[20] int score struct student *next } 链表练习: (1).编写函数struct student * creat(int n),创建一个按学号升序排列的新链表,每个链表中的结点中 的学号、成绩由键盘输入,一共n个节点。 (2).编写函数void print(struct student *head),输出链表,格式每行一个结点,包括学号,姓名,分数。 (3).编写函数struct student * merge(struct student *a,struct student *b), 将已知的a,b两个链表 按学号升序合并,若学号相同则保留成绩高的结点。 (4).编写函数struct student * del(struct student *a,struct student *b),从a链表中删除b链表中有 相同学号的那些结点。 (5).编写main函数,调用函数creat建立2个链表a,b,用print输出俩个链表;调用函数merge升序合并2个 链表,并输出结果;调用函数del实现a-b,并输出结果。 a: 20304,xxxx,75, 20311,yyyy,89 20303,zzzz,62 20307,aaaa,87 20320,bbbb,79 b: 20302,dddd,65 20301,cccc,99 20311,yyyy,87 20323,kkkk,88 20307,aaaa,92 20322,pppp,83

    标签: student struct score long

    上传时间: 2016-04-13

    上传用户:zxc23456789

  • %radon transform clear all % N=800 n=1:N fs=200 t=n/fs x1=exp(j*2*pi*(5*t+0.5*5*t.^2

    %radon transform clear all % N=800 n=1:N fs=200 t=n/fs x1=exp(j*2*pi*(5*t+0.5*5*t.^2)) x2=exp(j*2*pi*(5*t+0.5*15*t.^2)) x=x1+x2 %N=length(x) % ambifunb(x ) %*****************************************RAT naf=ambifunb(x) htl(abs(naf)) % [wh,rho,theta]=htl(abs(naf)) colormap([0,0,0]) % xlabel( 极半径 ) % ylabel( 角度 ) %**************************************%找出峰值点的坐标,计算初始频率和调频斜率(正确) %找出峰值点的坐标 b=max(max(wh)) [u,a]=find(wh>=0.8*b)

    标签: transform radon clear fs

    上传时间: 2014-10-27

    上传用户:Yukiseop

  • 一元稀疏多项式计算器的基本功能是: (1)输入并建立多项式; (2)输出多项式

    一元稀疏多项式计算器的基本功能是: (1)输入并建立多项式; (2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2,….,cn,en, 其中n是多项式的项数,ci和ei分别是第I项的系数和指数,序列按照指数降序排列; (3)多项式a和b相加,建立多项式a+b (4)多项式a和b相减,建立多项式a-b.

    标签: 多项式 稀疏 计算器 输入

    上传时间: 2016-10-25

    上传用户:时代电子小智

  • The "GEE! It s Simple" package illustrates Gaussian elimination with partial pivoting, which produce

    The "GEE! It s Simple" package illustrates Gaussian elimination with partial pivoting, which produces a factorization of P*A into the product L*U where P is a permutation matrix, and L and U are lower and upper triangular, respectively. The functions in this package are accurate, but they are far slower than their MATLAB equivalents (x=A\b, [L,U,p]=lu(A), and so on). They are presented here merely to illustrate and educate. "Real" production code should use backslash and lu, not this package.

    标签: illustrates elimination Gaussian pivoting

    上传时间: 2016-11-09

    上传用户:wang5829

  • The "GEE! It s Simple" package illustrates Gaussian elimination with partial pivoting, which produce

    The "GEE! It s Simple" package illustrates Gaussian elimination with partial pivoting, which produces a factorization of P*A into the product L*U where P is a permutation matrix, and L and U are lower and upper triangular, respectively. The functions in this package are accurate, but they are far slower than their MATLAB equivalents (x=A\b, [L,U,p]=lu(A), and so on). They are presented here merely to illustrate and educate. "Real" production code should use backslash and lu, not this package.

    标签: illustrates elimination Gaussian pivoting

    上传时间: 2014-01-21

    上传用户:lxm

  • This approach addresses two difficulties simultaneously: 1) the range limitation of mobile robot se

    This approach addresses two difficulties simultaneously: 1) the range limitation of mobile robot sensors and 2) the difficulty of detecting buildings in monocular aerial images. With the suggested method building outlines can be detected faster than the mobile robot can explore the area by itself, giving the robot an ability to “see” around corners. At the same time, the approach can compensate for the absence of elevation data in segmentation of aerial images. Our experiments demonstrate that ground-level semantic information (wall estimates) allows to focus the segmentation of the aerial image to find buildings and produce a ground-level semantic map that covers a larger area than can be built using the onboard sensors.

    标签: simultaneously difficulties limitation addresses

    上传时间: 2014-06-11

    上传用户:waitingfy

  • 实现一位加法器的设计

    实现一位加法器的设计,假设输入参数为A,B,则输出为A,B的和

    标签: 加法器

    上传时间: 2017-01-02

    上传用户:baiom

  • VxWorks 6.6 BSP开发执导 This document describes, in general terms, the elements that make up a board

    VxWorks 6.6 BSP开发执导 This document describes, in general terms, the elements that make up a board support package [BSP], the requirements for a VxWorks BSP, and the general behavior of a BSP during the boot process. This document outlines the steps needed to port an existing BSP to a new hardware platform or to write a new VxWorks BSP for custom hardware using a reference BSP or template BSP as a starting point. It provides hints and tips for debugging a BSP and solving common BSP development problems. It also provides information on the BSP validation test suite [BSP VTS] that is used to assess the functionality of a VxWorks BSP.

    标签: describes document elements VxWorks

    上传时间: 2017-03-23

    上传用户:磊子226