虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

5.<b>5</b>1

  • Instead of finding the longest common subsequence, let us try to determine the length of the LCS.

    Instead of finding the longest common subsequence, let us try to determine the length of the LCS. 􀂄 Then tracking back to find the LCS. 􀂄 Consider a1a2…am and b1b2…bn. 􀂄 Case 1: am=bn. The LCS must contain am, we have to find the LCS of a1a2…am-1 and b1b2…bn-1. 􀂄 Case 2: am≠bn. Wehave to find the LCS of a1a2…am-1 and b1b2…bn, and a1a2…am and b b b b1b2…bn-1 Let A = a1 a2 … am and B = b1 b2 … bn 􀂄 Let Li j denote the length of the longest i,g g common subsequence of a1 a2 … ai and b1 b2 … bj. 􀂄 Li,j = Li-1,j-1 + 1 if ai=bj max{ L L } a≠b i-1,j, i,j-1 if ai≠j L0,0 = L0,j = Li,0 = 0 for 1≤i≤m, 1≤j≤n.

    标签: the subsequence determine Instead

    上传时间: 2013-12-17

    上传用户:evil

  • 用栈、顺序表实现四则运算

    用栈、顺序表实现四则运算,可以识别+、-、*、/、和[],以#结尾。比如,5+6*(3-1)#,可以得到结果17

    标签: 四则运算 顺序表

    上传时间: 2017-03-10

    上传用户:comua

  • 哥德巴赫猜想: 将一给定的偶数表示成两个质数之和被称之为此数的哥德巴赫分割。例如

    哥德巴赫猜想: 将一给定的偶数表示成两个质数之和被称之为此数的哥德巴赫分割。例如, 4 = 2 + 2 6 = 3 + 3 8 = 3 + 5 10 = 3 + 7 = 5 + 5 12 = 5 + 7 14 = 3 + 11 = 7 + 7 … 换句话说,哥德巴赫猜想主张每个大于等于 4 的偶数都是哥德巴赫数-可表示成两个质数之和的数。[1]另有对奇数的相似猜想,称之为李维猜想。

    标签: 分割

    上传时间: 2014-01-13

    上传用户:xyipie

  • 采用单神经元结构对两类样本进行分类

    采用单神经元结构对两类样本进行分类,其中X为输入样本,T为目标向量。X=[-0.5,-0.5,0.3,0.1,-0.1,0.8,0.2,0.3 0.3,-0.2,-0.6,0.1,-0.5,1.0,0.3,0.9] T=[0,0,0,1,0,1,1,1]

    标签: 单神经元 分类 样本

    上传时间: 2013-12-18

    上传用户:xc216

  • 算术编码解码!具体的数据

    算术编码解码!具体的数据, 假设信源符号为{00, 01, 10, 11},这些符号的概率分别为{ 0.1, 0.4, 0.2, 0.3 },根据这些概率可把间隔[0, 1)分成4个子间隔:[0, 0.1), [0.1, 0.5), [0.5, 0.7), [0.7, 1),其中 表示半开放间隔,即包含 不包含 。上面的信息可综合在表1中。 表1 信源符号,概率和初始编码间隔 符号 00 01 10 11 概率 0.1 0.4 0.2 0.3 初始编码间隔 [0, 0.1) [0.1, 0.5) [0.5, 0.7) [0.7, 1) 如果二进制消息序列的输入为:10 00 11 00 10 11 01。编码时首先输入的符号是10,找到它的编码范围是[0.5, 0.7)。由于消息中第二个符号00的编码范围是[0, 0.1),因此它的间隔就取[0.5, 0.7)的第一个十分之一作为新间隔[0.5, 0.52)。依此类推,编码第3个符号11时取新间隔为[0.514, 0.52),编码第4个符号00时,取新间隔为[0.514, 0.5146),… 。消息的编码输出可以是最后一个间隔中的任意数。

    标签: 算术编码 数据 解码

    上传时间: 2014-01-03

    上传用户:cooran

  • Implementation of Edmonds Karp algorithm that calculates maxFlow of graph. Input: For each test c

    Implementation of Edmonds Karp algorithm that calculates maxFlow of graph. Input: For each test case, the first line contains the number of vertices (n) and the number of arcs (m). Then, there exist m lines, one for each arc (source vertex, ending vertex and arc weight, separated by a space). The nodes are numbered from 1 to n. The node 1 and node n should be in different sets. There are no more than 30 arcs and 15 nodes. The arc weights vary between 1 and 1 000 000. Output: The output is a single line for each case, with the corresponding minimum size cut. Example: Input: 7 11 1 2 3 1 4 3 2 3 4 3 1 3 3 4 1 3 5 2 4 6 6 4 5 2 5 2 1 5 7 1 6 7 9 Output: 5

    标签: Implementation calculates algorithm Edmonds

    上传时间: 2014-01-04

    上传用户:kiklkook

  • C语言算法速查手册 书本附件

    第1章 绪论 1 1.1 程序设计语言概述 1 1.1.1 机器语言 1 1.1.2 汇编语言 2 1.1.3 高级语言 2 1.1.4 C语言 3 1.2 C语言的优点和缺点 4 1.2.1 C语言的优点 4 1.2.2 C语言的缺点 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的复杂度 8 1.3.3 算法的准确性 10 1.3.4 算法的稳定性 14 第2章 复数运算 18 2.1 复数的四则运算 18 2.1.1 [算法1] 复数乘法 18 2.1.2 [算法2] 复数除法 20 2.1.3 【实例5】 复数的四则运算 22 2.2 复数的常用函数运算 23 2.2.1 [算法3] 复数的乘幂 23 2.2.2 [算法4] 复数的n次方根 25 2.2.3 [算法5] 复数指数 27 2.2.4 [算法6] 复数对数 29 2.2.5 [算法7] 复数正弦 30 2.2.6 [算法8] 复数余弦 32 2.2.7 【实例6】 复数的函数运算 34 第3章 多项式计算 37 3.1 多项式的表示方法 37 3.1.1 系数表示法 37 3.1.2 点表示法 38 3.1.3 [算法9] 系数表示转化为点表示 38 3.1.4 [算法10] 点表示转化为系数表示 42 3.1.5 【实例7】 系数表示法与点表示法的转化 46 3.2 多项式运算 47 3.2.1 [算法11] 复系数多项式相乘 47 3.2.2 [算法12] 实系数多项式相乘 50 3.2.3 [算法13] 复系数多项式相除 52 3.2.4 [算法14] 实系数多项式相除 54 3.2.5 【实例8】 复系数多项式的乘除法 56 3.2.6 【实例9】 实系数多项式的乘除法 57 3.3 多项式的求值 59 3.3.1 [算法15] 一元多项式求值 59 3.3.2 [算法16] 一元多项式多组求值 60 3.3.3 [算法17] 二元多项式求值 63 3.3.4 【实例10】 一元多项式求值 65 3.3.5 【实例11】 二元多项式求值 66 第4章 矩阵计算 68 4.1 矩阵相乘 68 4.1.1 [算法18] 实矩阵相乘 68 4.1.2 [算法19] 复矩阵相乘 70 4.1.3 【实例12】 实矩阵与复矩阵的乘法 72 4.2 矩阵的秩与行列式值 73 4.2.1 [算法20] 求矩阵的秩 73 4.2.2 [算法21] 求一般矩阵的行列式值 76 4.2.3 [算法22] 求对称正定矩阵的行列式值 80 4.2.4 【实例13】 求矩阵的秩和行列式值 82 4.3 矩阵求逆 84 4.3.1 [算法23] 求一般复矩阵的逆 84 4.3.2 [算法24] 求对称正定矩阵的逆 90 4.3.3 [算法25] 求托伯利兹矩阵逆的Trench方法 92 4.3.4 【实例14】 验证矩阵求逆算法 97 4.3.5 【实例15】 验证T矩阵求逆算法 99 4.4 矩阵分解与相似变换 102 4.4.1 [算法26] 实对称矩阵的LDL分解 102 4.4.2 [算法27] 对称正定实矩阵的Cholesky分解 104 4.4.3 [算法28] 一般实矩阵的全选主元LU分解 107 4.4.4 [算法29] 一般实矩阵的QR分解 112 4.4.5 [算法30] 对称实矩阵相似变换为对称三对角阵 116 4.4.6 [算法31] 一般实矩阵相似变换为上Hessen-Burg矩阵 121 4.4.7 【实例16】 对一般实矩阵进行QR分解 126 4.4.8 【实例17】 对称矩阵的相似变换 127 4.4.9 【实例18】 一般实矩阵相似变换 129 4.5 矩阵特征值的计算 130 4.5.1 [算法32] 求上Hessen-Burg矩阵全部特征值的QR方法 130 4.5.2 [算法33] 求对称三对角阵的全部特征值 137 4.5.3 [算法34] 求对称矩阵特征值的雅可比法 143 4.5.4 [算法35] 求对称矩阵特征值的雅可比过关法 147 4.5.5 【实例19】 求上Hessen-Burg矩阵特征值 151 4.5.6 【实例20】 分别用两种雅克比法求对称矩阵特征值 152 第5章 线性代数方程组的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解复系数方程组的全选主元高斯消去法 155 5.1.2 [算法37] 求解实系数方程组的全选主元高斯消去法 160 5.1.3 [算法38] 求解复系数方程组的全选主元高斯-约当消去法 163 5.1.4 [算法39] 求解实系数方程组的全选主元高斯-约当消去法 168 5.1.5 [算法40] 求解大型稀疏系数矩阵方程组的高斯-约当消去法 171 5.1.6 [算法41] 求解三对角线方程组的追赶法 174 5.1.7 [算法42] 求解带型方程组的方法 176 5.1.8 【实例21】 解线性实系数方程组 179 5.1.9 【实例22】 解线性复系数方程组 180 5.1.10 【实例23】 解三对角线方程组 182 5.2 矩阵分解法 184 5.2.1 [算法43] 求解对称方程组的LDL分解法 184 5.2.2 [算法44] 求解对称正定方程组的Cholesky分解法 186 5.2.3 [算法45] 求解线性最小二乘问题的QR分解法 188 5.2.4 【实例24】 求解对称正定方程组 191 5.2.5 【实例25】 求解线性最小二乘问题 192 5.3 迭代方法 193 5.3.1 [算法46] 病态方程组的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德尔迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解对称正定方程组的共轭梯度方法 205 5.3.6 [算法51] 求解托伯利兹方程组的列文逊方法 209 5.3.7 【实例26】 解病态方程组 214 5.3.8 【实例27】 用迭代法解方程组 215 5.3.9 【实例28】 求解托伯利兹方程组 217 第6章 非线性方程与方程组的求解 219 6.1 非线性方程求根的基本过程 219 6.1.1 确定非线性方程实根的初始近似值或根的所在区间 219 6.1.2 求非线性方程根的精确解 221 6.2 求非线性方程一个实根的方法 221 6.2.1 [算法52] 对分法 221 6.2.2 [算法53] 牛顿法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【实例29】 用对分法求非线性方程组的实根 232 6.2.6 【实例30】 用牛顿法求非线性方程组的实根 233 6.2.7 【实例31】 用插值法求非线性方程组的实根 235 6.2.8 【实例32】 用埃特金迭代法求非线性方程组的实根 237 6.3 求实系数多项式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【实例33】 用QR方法求解多项式的全部根 240 6.4 求非线性方程组一组实根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 拟牛顿法 244 6.4.3 【实例34】 用梯度法计算非线性方程组的一组实根 250 6.4.4 【实例35】 用拟牛顿法计算非线性方程组的一组实根 252 第7章 代数插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 线性插值 255 7.1.2 [算法60] 二次抛物线插值 256 7.1.3 [算法61] 全区间插值 259 7.1.4 【实例36】 拉格朗日插值 262 7.2 埃尔米特插值 263 7.2.1 [算法62] 埃尔米特不等距插值 263 7.2.2 [算法63] 埃尔米特等距插值 267 7.2.3 【实例37】 埃尔米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【实例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【实例39】 光滑插值 286 7.5 三次样条插值 287 7.5.1 [算法68] 第一类边界条件的三次样条函数插值 287 7.5.2 [算法69] 第二类边界条件的三次样条函数插值 292 7.5.3 [算法70] 第三类边界条件的三次样条函数插值 296 7.5.4 【实例40】 样条插值法 301 7.6 连分式插值 303 7.6.1 [算法71] 连分式插值 304 7.6.2 【实例41】 验证连分式插值的函数 308 第8章 数值积分法 309 8.1 变步长求积法 310 8.1.1 [算法72] 变步长梯形求积法 310 8.1.2 [算法73] 自适应梯形求积法 313 8.1.3 [算法74] 变步长辛卜生求积法 316 8.1.4 [算法75] 变步长辛卜生二重积分方法 318 8.1.5 [算法76] 龙贝格积分 322 8.1.6 【实例42】 变步长积分法进行一重积分 325 8.1.7 【实例43】 变步长辛卜生积分法进行二重积分 326 8.2 高斯求积法 328 8.2.1 [算法77] 勒让德-高斯求积法 328 8.2.2 [算法78] 切比雪夫求积法 331 8.2.3 [算法79] 拉盖尔-高斯求积法 334 8.2.4 [算法80] 埃尔米特-高斯求积法 336 8.2.5 [算法81] 自适应高斯求积方法 337 8.2.6 【实例44】 有限区间高斯求积法 342 8.2.7 【实例45】 半无限区间内高斯求积法 343 8.2.8 【实例46】 无限区间内高斯求积法 345 8.3 连分式法 346 8.3.1 [算法82] 计算一重积分的连分式方法 346 8.3.2 [算法83] 计算二重积分的连分式方法 350 8.3.3 【实例47】 连分式法进行一重积分 354 8.3.4 【实例48】 连分式法进行二重积分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法进行一重积分 356 8.4.2 [算法85] 蒙特卡洛法进行二重积分 358 8.4.3 【实例49】 一重积分的蒙特卡洛法 360 8.4.4 【实例50】 二重积分的蒙特卡洛法 361 第9章 常微分方程(组)初值问题的求解 363 9.1 欧拉方法 364 9.1.1 [算法86] 定步长欧拉方法 364 9.1.2 [算法87] 变步长欧拉方法 366 9.1.3 [算法88] 改进的欧拉方法 370 9.1.4 【实例51】 欧拉方法求常微分方程数值解 372 9.2 龙格-库塔方法 376 9.2.1 [算法89] 定步长龙格-库塔方法 376 9.2.2 [算法90] 变步长龙格-库塔方法 379 9.2.3 [算法91] 变步长基尔方法 383 9.2.4 【实例52】 龙格-库塔方法求常微分方程的初值问题 386 9.3 线性多步法 390 9.3.1 [算法92] 阿当姆斯预报校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全区间积分的双边法 399 9.3.4 【实例53】 线性多步法求常微分方程组初值问题 401 第10章 拟合与逼近 405 10.1 一元多项式拟合 405 10.1.1 [算法95] 最小二乘拟合 405 10.1.2 [算法96] 最佳一致逼近的里米兹方法 412 10.1.3 【实例54】 一元多项式拟合 417 10.2 矩形区域曲面拟合 419 10.2.1 [算法97] 矩形区域最小二乘曲面拟合 419 10.2.2 【实例55】 二元多项式拟合 428 第11章 特殊函数 430 11.1 连分式级数和指数积分 430 11.1.1 [算法98] 连分式级数求值 430 11.1.2 [算法99] 指数积分 433 11.1.3 【实例56】 连分式级数求值 436 11.1.4 【实例57】 指数积分求值 438 11.2 伽马函数 439 11.2.1 [算法100] 伽马函数 439 11.2.2 [算法101] 贝塔函数 441 11.2.3 [算法102] 阶乘 442 11.2.4 【实例58】 伽马函数和贝塔函数求值 443 11.2.5 【实例59】 阶乘求值 444 11.3 不完全伽马函数 445 11.3.1 [算法103] 不完全伽马函数 445 11.3.2 [算法104] 误差函数 448 11.3.3 [算法105] 卡方分布函数 450 11.3.4 【实例60】 不完全伽马函数求值 451 11.3.5 【实例61】 误差函数求值 452 11.3.6 【实例62】 卡方分布函数求值 453 11.4 不完全贝塔函数 454 11.4.1 [算法106] 不完全贝塔函数 454 11.4.2 [算法107] 学生分布函数 457 11.4.3 [算法108] 累积二项式分布函数 458 11.4.4 【实例63】 不完全贝塔函数求值 459 11.5 贝塞尔函数 461 11.5.1 [算法109] 第一类整数阶贝塞尔函数 461 11.5.2 [算法110] 第二类整数阶贝塞尔函数 466 11.5.3 [算法111] 变型第一类整数阶贝塞尔函数 469 11.5.4 [算法112] 变型第二类整数阶贝塞尔函数 473 11.5.5 【实例64】 贝塞尔函数求值 476 11.5.6 【实例65】 变型贝塞尔函数求值 477 11.6 Carlson椭圆积分 479 11.6.1 [算法113] 第一类椭圆积分 479 11.6.2 [算法114] 第一类椭圆积分的退化形式 481 11.6.3 [算法115] 第二类椭圆积分 483 11.6.4 [算法116] 第三类椭圆积分 486 11.6.5 【实例66】 第一类勒让德椭圆函数积分求值 490 11.6.6 【实例67】 第二类勒让德椭圆函数积分求值 492 第12章 极值问题 494 12.1 一维极值求解方法 494 12.1.1 [算法117] 确定极小值点所在的区间 494 12.1.2 [算法118] 一维黄金分割搜索 499 12.1.3 [算法119] 一维Brent方法 502 12.1.4 [算法120] 使用一阶导数的Brent方法 506 12.1.5 【实例68】 使用黄金分割搜索法求极值 511 12.1.6 【实例69】 使用Brent法求极值 513 12.1.7 【实例70】 使用带导数的Brent法求极值 515 12.2 多元函数求极值 517 12.2.1 [算法121] 不需要导数的一维搜索 517 12.2.2 [算法122] 需要导数的一维搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共轭梯度法 525 12.2.5 [算法125] 准牛顿法 531 12.2.6 【实例71】 验证不使用导数的一维搜索 536 12.2.7 【实例72】 用Powell算法求极值 537 12.2.8 【实例73】 用共轭梯度法求极值 539 12.2.9 【实例74】 用准牛顿法求极值 540 12.3 单纯形法 542 12.3.1 [算法126] 求无约束条件下n维极值的单纯形法 542 12.3.2 [算法127] 求有约束条件下n维极值的单纯形法 548 12.3.3 [算法128] 解线性规划问题的单纯形法 556 12.3.4 【实例75】 用单纯形法求无约束条件下N维的极值 568 12.3.5 【实例76】 用单纯形法求有约束条件下N维的极值 569 12.3.6 【实例77】 求解线性规划问题 571 第13章 随机数产生与统计描述 574 13.1 均匀分布随机序列 574 13.1.1 [算法129] 产生0到1之间均匀分布的一个随机数 574 13.1.2 [算法130] 产生0到1之间均匀分布的随机数序列 576 13.1.3 [算法131] 产生任意区间内均匀分布的一个随机整数 577 13.1.4 [算法132] 产生任意区间内均匀分布的随机整数序列 578 13.1.5 【实例78】 产生0到1之间均匀分布的随机数序列 580 13.1.6 【实例79】 产生任意区间内均匀分布的随机整数序列 581 13.2 正态分布随机序列 582 13.2.1 [算法133] 产生任意均值与方差的正态分布的一个随机数 582 13.2.2 [算法134] 产生任意均值与方差的正态分布的随机数序列 585 13.2.3 【实例80】 产生任意均值与方差的正态分布的一个随机数 587 13.2.4 【实例81】 产生任意均值与方差的正态分布的随机数序列 588 13.3 统计描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同时的t分布检验 591 13.3.3 [算法137] 方差不同时的t分布检验 594 13.3.4 [算法138] 方差的F检验 596 13.3.5 [算法139] 卡方检验 599 13.3.6 【实例82】 计算随机样本的矩 601 13.3.7 【实例83】 t分布检验 602 13.3.8 【实例84】 F分布检验 605 13.3.9 【实例85】 检验卡方检验的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序数组的二分查找 609 14.1.2 [算法141] 无序数组同时查找最大和最小的元素 611 14.1.3 [算法142] 无序数组查找第M小的元素 613 14.1.4 【实例86】 基本查找 615 14.2 结构体和磁盘文件的查找 617 14.2.1 [算法143] 无序结构体数组的顺序查找 617 14.2.2 [算法144] 磁盘文件中记录的顺序查找 618 14.2.3 【实例87】 结构体数组和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函数 622 14.3.2 [算法146] 哈希函数 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中删除元素 631 14.3.6 【实例88】 构造哈希表并进行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希尔排序 637 15.1.3 【实例89】 插入排序 639 15.2 交换排序 641 15.2.1 [算法152] 气泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【实例90】 交换排序 644 15.3 选择排序 646 15.3.1 [算法154] 直接选择排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【实例91】 选择排序 650 15.4 线性时间排序 651 15.4.1 [算法156] 计数排序 651 15.4.2 [算法157] 基数排序 653 15.4.3 【实例92】 线性时间排序 656 15.5 归并排序 657 15.5.1 [算法158] 二路归并排序 658 15.5.2 【实例93】 二路归并排序 660 第16章 数学变换与滤波 662 16.1 快速傅里叶变换 662 16.1.1 [算法159] 复数据快速傅里叶变换 662 16.1.2 [算法160] 复数据快速傅里叶逆变换 666 16.1.3 [算法161] 实数据快速傅里叶变换 669 16.1.4 【实例94】 验证傅里叶变换的函数 671 16.2 其他常用变换 674 16.2.1 [算法162] 快速沃尔什变换 674 16.2.2 [算法163] 快速哈达玛变换 678 16.2.3 [算法164] 快速余弦变换 682 16.2.4 【实例95】 验证沃尔什变换和哈达玛的函数 684 16.2.5 【实例96】 验证离散余弦变换的函数 687 16.3 平滑和滤波 688 16.3.1 [算法165] 五点三次平滑 689 16.3.2 [算法166] α-β-γ滤波 690 16.3.3 【实例97】 验证五点三次平滑 692 16.3.4 【实例98】 验证α-β-γ滤波算法 693  

    标签: C 算法 附件 源代码

    上传时间: 2015-06-29

    上传用户:cbsdukaf

  • 蛇形矩阵(规律)

    题目描述 蛇行矩阵 Problem 蛇形矩阵是由1开始的自然数依次排列成的一个矩阵上三角形。 输入 Input 本题有多组数据,每组数据由一个正整数N组成。(N不大于100)  输出 Output 对于每一组数据,输出一个N行的蛇形矩阵。两组输出之间不要额外的空行。  矩阵三角中同一行的数字用一个空格分开。行尾不要多余的空格。  样例输入 5 样例输出 1 3 6 10 15 2 5 9 14 4 8 13 7 12 11

    标签: 数字规律 数组 三角形

    上传时间: 2016-02-29

    上传用户:lwol2007

  • 离散实验 一个包的传递 用warshall

     实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); } 

    标签: warshall 离散 实验

    上传时间: 2016-06-27

    上传用户:梁雪文以

  • 红外遥控RGB

    #include "STC90.h" #include < intrins.h > #define uchar unsigned char #define uint unsigned int #define led_port P1 sbit IR_RE = P3^2; sbit led_r = P1^3; sbit led_g = P1^4; sbit led_b = P1^5; sbit led_wd = P1^7; sbit K1 =P3^0 ; //增加键 sbit K2 =P3^1 ; //减少键 sbit BEEP =P3^7 ; //蜂鸣器 uchar temp,temp1; bit k=0; //红外解码判断标志位,为0则为有效信号,为1则为无效 bit Flag2; uchar date[4]={0,0,0,0}; //date数组为存放地址原码,反码,数据原码,反码 uint lade_1,lade_2,lade_3,lade_4; uint num; uchar date_ram,ee_temp,ee_temp1; uchar WDT_NUM=0; uchar const dofly[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 显示段码值01234567 uchar code seg[]={7,6,5,4,3,2,1,0};//分别对应相应的数码管点亮,即位码 unsigned long disp_date; void fade(); void fade1(); /*************************** 看门狗子程序*************************/ void watchdog_timer() { if(WDT_NUM==5) { WDT_NUM=0; led_wd=!led_wd; } WDT_NUM++; WDT_CONTR=0x3f; } /******************************************************************/ void delay(unsigned int cnt) { while(--cnt); } /*--------------------------延时1ms程子程序-----------------------*/ void delay_1ms(uint z) { uint x,y; for(x=z;x>0;x--) for(y=126;y>0;y--); } /*--------------------------延时1ms程子程序-----------------------*/ delay1000() { uchar i,j; i=5; do{j=95; do{j--;} while(j); i--; } while(i); } /*---------------------------延时882us子程序-----------------------*/ delay882() { uchar i,j; i=6; do{j=71; do{j--;} while(j); i--; }while(i); } /*--------------------------延时2400us程子程序-----------------------*/ delay2400() { uchar i,j; i=5; do{j=237; do{j--;} while(j); i--; }while(i); } /**********************************************************************/ /* void display() { uchar i; for(i=0;i<8;i++) { P0=dofly[disp_date%10];//取显示数据,段码 P2=seg[i]; //取位码 delay_1ms(1); disp_date/=10; } } */ /*********************************************************************/ uchar EEPROM_read(uint addr)//EEPROM字节读 { ISP_CONTR=0x83; //系统时钟<12M时,对ISP_CONTR寄存器设置的值,本电路为11.0592M ISP_CMD=1; //字节读 ISP_ADDRH=(addr&0xff00)>>8; ISP_ADDRL=addr&0x00ff; ISP_TRIG=0x46; ISP_TRIG=0xb9; _nop_(); _nop_(); return ISP_DATA; } //-------------------------------------------------------------------- void EEPROM_write(uint addr,uchar dat)//EEPROM字节写 { ISP_CONTR=0x83; //系统时钟<12M时,对ISP_CONTR寄存器设置的值,本电路为11.0592M ISP_CMD=2; //字节编程 ISP_ADDRH=(addr&0xff00)>>8; ISP_ADDRL=addr&0x00ff; ISP_DATA=dat; ISP_TRIG=0x46; ISP_TRIG=0xb9; _nop_(); _nop_(); } //-------------------------------------------------------------------- void EEPROM_ERASE(uint addr)//EEPROM扇区擦除 { ISP_CONTR=0x83; //系统时钟<12M时,对ISP_CONTR寄存器设置的值,本电路为11.0592M ISP_CMD=3; //扇区擦除 ISP_ADDRH=(addr&0xff00)>>8; ISP_ADDRL=addr&0x00ff; ISP_TRIG=0x46; ISP_TRIG=0xb9; _nop_(); _nop_(); } //************************************************************** /*----------------------------------------------------------*/ /*-----------------------红外解码程序(核心)-----------------*/ /*----------------------------------------------------------*/ void IR_decode() { uchar i,j; while(IR_RE==0); delay2400(); if(IR_RE==1) //延时2.4ms后如果是高电平则是新码 { delay1000(); delay1000(); for(i=0;i<4;i++) { for(j=0;j<8;j++) { while(IR_RE==0); //等待地址码第1位高电平到来 delay882(); //延时882us判断此时引脚电平 ///CY=IR_RE; if(IR_RE==0) { date[i]>>=1; date[i]=date[i]|0x00; } else if(IR_RE==1) { delay1000(); date[i]>>=1; date[i]=date[i]|0x80; } } //1位数据接收结束 } //32位二进制码接收结束 } } /* void LED_PWM() { lade_2=num; //384 lade_4=num; //384 while(lade_2!=0&Flag2==1) { for(lade_3=512;lade_3>lade_4;lade_3--) //512 { led_port=0x00; delay(1); } lade_3=512; //512 lade_4--; for(lade_1=0;lade_1<lade_2;lade_1++) { led_port=0x38; //c7 delay(1); } lade_1=0; lade_2--; if(temp!=0x0c&Flag2==1) { lade_2=0; } lade_2=num; //384 lade_4=num; //384 } } */ void calc() { EEPROM_read(0x2000); ee_temp1=ISP_DATA; ee_temp=ee_temp1&0x0f; //************************************* 1 /* if(date[3]==0xff&Flag2==1) { if(num>=20) { num=num-80; } //else num=1; LED_PWM(); } if(date[3]==0xfe&Flag2==1) { if(num<=500) { num=num+80; } // else num=511; LED_PWM(); } if(ee_temp1==0xfd) { led_port=0x00; watchdog_timer(); } if(ee_temp1==0xfc) { led_port=0x00; led_r=1; led_g=1; led_b=1; watchdog_timer(); } */ //********************************************** 2 if(ee_temp1==0xfb) { led_port=0x00; led_r=1; watchdog_timer(); } if(ee_temp1==0xfa) { led_port=0x00; led_g=1; watchdog_timer(); } if(ee_temp1==0xf9) { led_port=0x00; led_b=1; watchdog_timer(); } if(ee_temp1==0xf8) { led_port=0x00; led_r=1; led_g=1; led_b=1; watchdog_timer(); } //************************************** 3 if(ee_temp1==0xf7) { uint fade_1,fade_2,fade_3,fade_4; fade_2=448; //384 fade_4=448; //384 while(fade_2!=0&ee_temp==0x07) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x10; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x07) { fade_2=0; } watchdog_timer(); fade_2=448; //384 fade_4=448; //384 } } if(ee_temp1==0xf6) { uint fade_1,fade_2,fade_3,fade_4; fade_2=448; //384 fade_4=448; //384 while(fade_2!=0&ee_temp==0x06) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x20; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x06) { fade_2=0; } watchdog_timer(); fade_2=448; //384 fade_4=448; //384 } } if(ee_temp1==0xf5) { uint fade_1,fade_2,fade_3,fade_4; fade_2=448; //384 fade_4=448; //384 while(fade_2!=0&ee_temp==0x05) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x08; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x05) { fade_2=0; } watchdog_timer(); fade_2=448; //384 fade_4=448; //384 } } if(ee_temp1==0xf4) { while(ee_temp==4) { led_port=0x00; led_r=1; delay_1ms(200); led_port=0x00; led_r=1; led_g=1; delay_1ms(200); led_port=0x00; led_g=1; delay_1ms(200); watchdog_timer(); led_port=0x00; led_g=1; led_b=1; delay_1ms(200); led_port=0x00; led_b=1; delay_1ms(200); led_port=0x00; led_b=1; led_r=1; delay_1ms(200); watchdog_timer(); } } //************************************** 4 if(ee_temp1==0xf3) { uint fade_1,fade_2,fade_3,fade_4; fade_2=416; //384 fade_4=416; //384 while(fade_2!=0&ee_temp==0x03) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x10; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x03) { fade_2=0; } watchdog_timer(); fade_2=416; //384 fade_4=416; //384 } } if(ee_temp1==0xf2) { uint fade_1,fade_2,fade_3,fade_4; fade_2=384; //384 fade_4=384; //384 while(fade_2!=0&ee_temp==0x02) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x20; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x02) { fade_2=0; } watchdog_timer(); fade_2=384; //384 fade_4=384; //384 } } if(ee_temp1==0xf1) { uint fade_1,fade_2,fade_3,fade_4; fade_2=348; //384 fade_4=348; //384 while(fade_2!=0&ee_temp==0x01) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x08; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x01) { fade_2=0; } watchdog_timer(); fade_2=348; //384 fade_4=348; //384 } } if(ee_temp1==0xf0) { while(ee_temp==0) { led_port=0x00; led_r=1; delay_1ms(500); watchdog_timer(); led_port=0x00; led_g=1; delay_1ms(500); led_port=0x00; led_b=1; delay_1ms(500); watchdog_timer(); } } //******************************************** 5 if(ee_temp1==0xef) { uint fade_1,fade_2,fade_3,fade_4; fade_2=384; //384 fade_4=384; //384 while(fade_2!=0&ee_temp==0x0f) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x10; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x0f) { fade_2=0; } watchdog_timer(); fade_2=384; //384 fade_4=384; //384 } } if(ee_temp1==0xee) { uint fade_1,fade_2,fade_3,fade_4; fade_2=320; //384 fade_4=320; //384 while(fade_2!=0&ee_temp==0x0e) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x20; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x0e) { fade_2=0; } watchdog_timer(); fade_2=320; //384 fade_4=320; //384 } } if(ee_temp1==0xed) { uint fade_1,fade_2,fade_3,fade_4; fade_2=320; //384 fade_4=320; //384 while(fade_2!=0&ee_temp==0x0d) { for(fade_3=512;fade_3>fade_4;fade_3--) //512 { led_port=0x08; delay(1); } fade_3=512; //512 fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x0d) { fade_2=0; } watchdog_timer(); fade_2=320; //384 fade_4=320; //384 } } if(ee_temp1==0xec) fade(); //******************************************* 6 if(ee_temp1==0xeb) { led_port=0x00; led_r=1; led_g=1; watchdog_timer(); } if(ee_temp1==0xea) { led_port=0x00; //led_r=0; led_g=1; led_b=1; watchdog_timer(); } if(ee_temp1==0xe9) { led_port=0x00; led_r=1; //led_g=0; led_b=1; watchdog_timer(); } if(ee_temp1==0xe8) fade1(); } void fade() { // uchar i; uint fade_1,fade_2,fade_3,fade_4; fade_2=512; fade_4=511; while(fade_2!=0&ee_temp==0x0c) { for(fade_3=512;fade_3>fade_4;fade_3--) { led_port=0x10; delay(1); } fade_3=512; fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x0c) { fade_2=0; } } watchdog_timer(); fade_2=512; fade_4=511; while(fade_2!=0&ee_temp==0x0c) { if(ee_temp!=0x0c) { fade_2=0; } for(fade_3=512;fade_3>fade_4;fade_3--) { led_port=0x20; delay(1); // watchdog_timer(); } fade_3=512; fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); // watchdog_timer(); } fade_1=0; fade_2--; } watchdog_timer(); fade_2=512; fade_4=511; while(fade_2!=0&ee_temp==0x0c) { if(ee_temp!=0x0c) { fade_2=0; } for(fade_3=512;fade_3>fade_4;fade_3--) { led_port=0x08; delay(1); watchdog_timer(); } fade_3=512; fade_4--; watchdog_timer(); for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); watchdog_timer(); } fade_1=0; fade_2--; } watchdog_timer(); } void fade1() { // uchar i; uint fade_1,fade_2,fade_3,fade_4; fade_2=128; fade_4=127; while(fade_2!=0&ee_temp==0x08) { for(fade_3=128;fade_3>fade_4;fade_3--) { led_port=0x10; delay(1); } fade_3=128; fade_4--; for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x08; delay(1); } fade_1=0; fade_2--; if(ee_temp!=0x08) { fade_2=0; } } watchdog_timer(); fade_2=128; fade_4=127; while(fade_2!=0&ee_temp==0x08) { if(ee_temp!=0x08) { fade_2=0; } for(fade_3=128;fade_3>fade_4;fade_3--) { led_port=0x20; delay(1); } fade_3=128; fade_4--; for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x10; delay(1); } fade_1=0; fade_2--; } watchdog_timer(); fade_2=128; fade_4=127; while(fade_2!=0&ee_temp==0x08) { if(ee_temp!=0x08) { fade_2=0; } for(fade_3=128;fade_3>fade_4;fade_3--) { led_port=0x08; delay(1); } fade_3=128; fade_4--; for(fade_1=0;fade_1<fade_2;fade_1++) { led_port=0x20; delay(1); } fade_1=0; fade_2--; } watchdog_timer(); } void init() { led_port=0x00; /* led_r=1; delay_1ms(500); led_port=0x00; led_g=1; delay_1ms(500); led_port=0x00; led_b=1; delay_1ms(500); led_port=0x00; */ delay_1ms(2); WDT_CONTR=0x3f; delay_1ms(500); } //******************************** void main() { init(); Flag2=0; SP=0x60; //堆栈指针 EX0=1; //允许外部中断0,用于检测红外遥控器按键 EA=1; num=255; while(1) { calc(); } } //******************************************************************** /*------------------------外部中断0程序-------------------------*/ /*------------------主要用于处理红外遥控键值--------------------*/ void int0() interrupt 0 { uchar i; Flag2=0; /////// k=0; EX0=0; //检测到有效信号关中断,防止干扰 for(i=0;i<4;i++) { delay1000(); if(IR_RE==1){k=1;} //刚开始为9ms的引导码. } led_port=0x00; if(k==0) { IR_decode(); //如果接收到的是有效信号,则调用解码程序 if(date[3]>=0xe8) { if(date[3]<=0xfb) { temp1=date[3]; EEPROM_ERASE(0x2000); //STC_EEROM_0X2000 temp1 EEPROM_write(0x2000,temp1); EEPROM_read(0x2000); ee_temp1=ISP_DATA; ee_temp=ee_temp1&0x0f; /* temp=date[3]&0x0f; EEPROM_ERASE(0x2004); //STC_EEROM_0X2004 temp EEPROM_write(0x2004,temp); */ } else { EEPROM_read(0x2000); ee_temp1=ISP_DATA; ee_temp=ee_temp1&0x0f; } } delay2400(); delay2400(); delay2400(); delay_1ms(500); } EX0=1; //开外部中断,允许新的遥控按键 }

    标签: RGB 红外遥控

    上传时间: 2016-07-02

    上传用户:184890962