现代信息处理应用中,对模数转换器的速度、精度、功耗和动态性能等关键性能指标不断提出更高的要求。针对模数转换的实际应用,提出并设计了一种基于TI公司生产的双通道14 位 250MSPS 低功耗A / D转换器 ADS4249的RGB视频编码器电路设计。这款A / D转换器的技术创新点在于其完美的实现高动态性能的同时又能拥有1.8 V超低功耗。这一特性使得ADS4249非常适合多载波,宽带通信的信号处理应用。
上传时间: 2013-10-28
上传用户:kiklkook
以某高速实时频谱仪为应用背景,论述了5 Gsps采样率的高速数据采集系统的构成和设计要点,着重分析了采集系统的关键部分高速ADC(analog to digital,模数转换器)的设计、系统采样时钟设计、模数混合信号完整性设计、电磁兼容性设计和基于总线和接口标准(PCI Express)的数据传输和处理软件设计。在实现了系统硬件的基础上,采用Xilinx公司ISE软件的在线逻辑分析仪(ChipScope Pro)测试了ADC和采样时钟的性能,实测表明整体指标达到设计要求。给出上位机对采集数据进行处理的结果,表明系统实现了数据的实时采集存储功能。
上传时间: 2014-11-26
上传用户:黄蛋的蛋黄
模拟转换器性能不只依赖分辨率规格 大量的模数转换器(ADC)使人们难以选择最适合某种特定应用的ADC器件。工程师们选择ADC时,通常只注重位数、信噪比(SNR)、谐波性能,但是其它规格也同样重要。本文将介绍ADC器件最易受到忽视的九项规格,并说明它们是如何影响ADC性能的。 1. SNR比分辨率更为重要。 ADC规格中最常见的是所提供的分辨率,其实该规格并不能表明ADC器件的任何能力。但可以用位数n来计算ADC的理论SNR: 不 过工程师也许并不知道,热噪声、时钟抖动、差分非线性(DNL)误差以及其它参数异常都会限制ADC器件的SNR。对于高性能高分辨率转换器尤其如此。一 些数据表提供有效位数(ENOB)规格,它描述了ADC器件所能提供的有效位数。为了计算ADC的ENOB值,应把测量的SNR值放入上述公式,并求解 n。
上传时间: 2014-12-22
上传用户:z240529971
摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79 文献标识码:A 文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。
上传时间: 2013-12-17
上传用户:xg262122
德州仪器(TI)通过多种不同的处理工艺提供了宽范围的运算放大器产品,其类型包括了高精度、微功耗、低电压、高电压、高速以及轨至轨。TI还开发了业界最大的低功耗及低电压运算放大器产品选集,其设计特性可满足宽范围的多种应用。为使您的选择流程更为轻松,我们提供了一个交互式的在线运算放大器参数搜索引擎——amplifier.ti.com/search,可供您链接至各种不同规格的运算放大器。设计考虑因素为某项应用选择最佳的运算放大器所要考虑的因素涉及到多个相关联的需求。为此,设计人员必须经常权衡彼此矛盾的尺寸、成本、性能等指标因素。即使是资历最老的工程师也可能会为此而苦恼,但您大可不必如此。紧记以下的几点,您将会发现选择范围将很快的缩小至可掌控的少数几个。电源电压(VS)——选择表中包括了低电压(最小值低于2.7V)及宽电压范围(最小值高于5V)的部分。其余运放的选择类型(例如精密),可通过快速查验供电范围栏来适当选择。当采用单电源供电时,应用可能需要具有轨至轨(rail-to-rail)性能,并考虑精度相关的参数。精度——主要与输入偏移电压(VOS)相关,并分别考虑随温度漂移、电源抑制比(PSRR)以及共模抑制比(CMRR)的变化。精密(precision)一般用于描述具有低输入偏置电压及低输入偏置电压温度漂移的运算放大器。微小信号需要高精度的运算放大器,例如热电偶及其它低电平的传感器。高增益或多级电路则有可能需求低偏置电压。
上传时间: 2013-11-25
上传用户:1966649934
采用高输入频率、高速模数转换器(ADC)的系统设计是一项具挑战性的任务。ADC输入接口设计有6个主要条件:输入阻抗、输入驱动、带宽、通带平坦度、噪声和失真。
上传时间: 2013-10-21
上传用户:chukeey
印刷电路板(PCB)设计解决方案市场和技术领军企业Mentor Graphics(Mentor Graphics)宣布推出HyperLynx® PI(电源完整性)产品,满足业内高端设计者对于高性能电子产品的需求。HyperLynx PI产品不仅提供简单易学、操作便捷,又精确的分析,让团队成员能够设计可行的电源供应系统;同时缩短设计周期,减少原型生成、重复制造,也相应降低产品成本。随着当今各种高性能/高密度/高脚数集成电路的出现,传输系统的设计越来越需要工程师与布局设计人员的紧密合作,以确保能够透过众多PCB电源与接地结构,为IC提供纯净、充足的电力。配合先前推出的HyperLynx信号完整性(SI)分析和确认产品组件,Mentor Graphics目前为用户提供的高性能电子产品设计堪称业内最全面最具实用性的解决方案。“我们拥有非常高端的用户,受到高性能集成电路多重电压等级和电源要求的驱使,需要在一个单一的PCB中设计30余套电力供应结构。”Mentor Graphics副总裁兼系统设计事业部总经理Henry Potts表示。“上述结构的设计需要快速而准 确的直流压降(DC Power Drop)和电源杂讯(Power Noise)分析。拥有了精确的分析信息,电源与接地层结构和解藕电容数(de-coupling capacitor number)以及位置都可以决定,得以避免过于保守的设计和高昂的产品成本。”
上传时间: 2013-11-18
上传用户:362279997
数字与模拟电路设计技巧IC与LSI的功能大幅提升使得高压电路与电力电路除外,几乎所有的电路都是由半导体组件所构成,虽然半导体组件高速、高频化时会有EMI的困扰,不过为了充分发挥半导体组件应有的性能,电路板设计与封装技术仍具有决定性的影响。 模拟与数字技术的融合由于IC与LSI半导体本身的高速化,同时为了使机器达到正常动作的目的,因此技术上的跨越竞争越来越激烈。虽然构成系统的电路未必有clock设计,但是毫无疑问的是系统的可靠度是建立在电子组件的选用、封装技术、电路设计与成本,以及如何防止噪讯的产生与噪讯外漏等综合考虑。机器小型化、高速化、多功能化使得低频/高频、大功率信号/小功率信号、高输出阻抗/低输出阻抗、大电流/小电流、模拟/数字电路,经常出现在同一个高封装密度电路板,设计者身处如此的环境必需面对前所未有的设计思维挑战,例如高稳定性电路与吵杂(noisy)性电路为邻时,如果未将噪讯入侵高稳定性电路的对策视为设计重点,事后反复的设计变更往往成为无解的梦魇。模拟电路与高速数字电路混合设计也是如此,假设微小模拟信号增幅后再将full scale 5V的模拟信号,利用10bit A/D转换器转换成数字信号,由于分割幅宽祇有4.9mV,因此要正确读取该电压level并非易事,结果造成10bit以上的A/D转换器面临无法顺利运作的窘境。另一典型实例是使用示波器量测某数字电路基板两点相隔10cm的ground电位,理论上ground电位应该是零,然而实际上却可观测到4.9mV数倍甚至数十倍的脉冲噪讯(pulse noise),如果该电位差是由模拟与数字混合电路的grand所造成的话,要测得4.9 mV的信号根本是不可能的事情,也就是说为了使模拟与数字混合电路顺利动作,必需在封装与电路设计有相对的对策,尤其是数字电路switching时,ground vance noise不会入侵analogue ground的防护对策,同时还需充分检讨各电路产生的电流回路(route)与电流大小,依此结果排除各种可能的干扰因素。以上介绍的实例都是设计模拟与数字混合电路时经常遇到的瓶颈,如果是设计12bit以上A/D转换器时,它的困难度会更加复杂。
上传时间: 2013-11-16
上传用户:731140412
今天,电视机与视讯转换盒应用中的大多数调谐器采用的都是传统单变换MOPLL概念。这种调谐器既能处理模拟电视讯号也能处理数字电视讯号,或是同时处理这两种电视讯号(即所谓的混合调谐器)。在设计这种调谐器时需考虑的关键因素包括低成本、低功耗、小尺寸以及对外部组件的选择。本文将介绍如何用英飞凌的MOPLL调谐芯片TUA6039-2或其影像版TUA6037实现超低成本调谐器参考设计。这种单芯片ULC调谐器整合了射频和中频电路,可工作在5V或3.3V,功耗可降低34%。设计采用一块单层PCB,进一步降低了系统成本,同时能处理DVB-T/PAL/SECAM、ISDB-T/NTSC和ATSC/NTSC等混合讯号,可支持几乎全球所有地区标准。图1为采用TUA6039-2/TUA6037设计单变换调谐器架构图。该调谐器实际上不仅是一个射频调谐器,也是一个half NIM,因为它包括了中频模块。射频输入讯号透过一个简单的高通滤波器加上中频与民间频段(CB)陷波器的组合电路进行分离。该设计没有采用PIN二极管进行频段切换,而是采用一个非常简单的三工电路进行频段切换。天线阻抗透过高感抗耦合电路变换至已调谐的输入电路。然后透过英飞凌的高增益半偏置MOSFET BF5030W对预选讯号进行放大。BG5120K双MOSFET可以用于两个VHF频段。在接下来的调谐后带通滤波器电路中,则进行信道选择和邻道与影像频率等多余讯号的抑制。前级追踪陷波器和带通滤波器的容性影像频率补偿电路就是专门用来抑制影像频率。
上传时间: 2013-11-19
上传用户:ryb
AutoCAD是由美国Autodesk欧特克官方于二十世纪八十年代初为微机上应用CAD技术而开发的绘图程序软件。AutoCAD 2010于2009年3月23日发布,它可以在各种操作系统支持的微型计算机和工作站上运行,并支持分辨率由320×200到2048×1024的各种图形显示设备40多种,以及数字仪和鼠标器30多种,绘图仪和打印机数十种。 AutoCAD 2010官方简体中文版下载(32bit,1.74GB) AutoCAD 2010官方简体中文版下载(64bit,1.92GB) - 动态块对几何及尺寸约束的支持,让你能够基于块属性表来驱动块尺寸,甚至在不保存或退出块编辑器的情况下测试块。 - 光滑网线工具能够让你创建自由形式和流畅的3D模型。 - 子对象选择过滤器可以限制子对象选择为面、边或顶点。 - PDF输出提供了灵活、高质量的输出。把TureType字体输出为文本而不是图片,定义包括层信息在内的混合选项,并可以自动预览输出的PDF。 - PDF覆盖是AutoCAD2010中最受用户期待的功能。你可以通过与附加其它的外部参照如DWG、DWF、DGN及图形文件一样的方式,在AutoCAD图形中附加一个PDF文件。你甚至可以利用熟悉的对象捕捉来捕捉PDF文件中几何体的关键点。 - 填充变得更加强大和灵活,你能够夹点编辑非关联填充对象。 - 初始安装能够让你很容易地按照你的需求定义AutoCAD环境。你定义的设置会自动保存到一个自定义工作空间。 - 应用程序菜单(位于AutoCAD窗口的左上角)变得更加有效,可以更加容易地访问工具。 - Ribbon功能升级了,对工具的访问变得更加灵活和方便。这个功能被投票为AutoCAD 2010 beta测试人员最喜欢的功能之一。 - 快速访问工具栏的功能增强了,提供了更多的功能。 - 多引线提供了更多的灵活性,它能让你对多引线的不同部分设置属性,对多引线的样式设置垂直附件,还有更多! - 查找和替换功能使你能够缩放到一个高亮的文本对象,可以快速创建包含高亮对象的选择集。 - 新功能研习已经升级,包含了AutoCAD 2010的新功能。 - 尺寸功能增强了,提供了更多对尺寸文本的显示和位置的控制功能。 - 颜色选择可以在AutoCAD颜色索引器里更容易被看到,你甚至可以在层下拉列表中直接改变层的颜色。 - 测量工具使你能够测量所选对象的距离、半径、角度、面积或体积。 - 反转工具使你可以反转直线、多段线、样条线和螺旋线的方向。 - 样条线和多段线编辑工具可以把样条线转换为多段线。 - 清理工具包含了一个清理0长度几何体和空文本对象的选项。 - 视口旋转功能使你能够控制一个布局中视口的旋转角度。 - 参照工具(位于Ribbon的插入标签)能够让你附加和修改任何外部参照文件,包括DWG, DWF, DGN, PDF或图片格式。 - 图纸集使你可以设置哪些图纸或部分应该被包含在发布操作中,图纸列表表格比以前更加灵活。 - 快速查看布局和快速查看图形除了包含布局预览外,还会有一个模型空间预览图形。 - 文件浏览对话框(如打开和保存)在输入文件名的时候支持自动完成。对象尺寸限制已经被扩大到至少4GB(取决于你的系统配置),这会提供更大的灵活性。 - 3D打印功能让你通过一个互联网连接来直接输出你的3D AutoCAD图形到支持STL的打印机。 - CUIx文件格式在CUI编程器中工作时,会提高性能。它会包含文件中定义的命令所使用的自定义图像。 - 动作宏包含了一个新的动作宏管理器,一个基点选项和合理的提示
上传时间: 2013-11-07
上传用户:牛津鞋