很有帮助的粒子群算法很有帮助的粒子群算法很有帮助的粒子群算法很有帮助的粒子群算法很有帮助的粒子群算法很有帮助的粒子群算法
标签: 源程序
上传时间: 2015-03-05
上传用户:thefalls
粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation).源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域
标签: evolutionary computation PSO 粒子群
上传时间: 2015-03-28
上传用户:源弋弋
vc++版本的粒子群优化算法程序,该算法使用简单,收敛快速,是遗传算法之后的又一重要智能算法.
上传时间: 2013-12-26
上传用户:ruixue198909
遗传粒子群的最新改进算法,随着维度增加效果更好
上传时间: 2013-12-20
上传用户:star_in_rain
遗传算法与神经网络混合的算法程序、粒子群优化与神经网络混合的算法程序,可以进行算法结果的比较
上传时间: 2013-12-15
上传用户:plsee
粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域
标签: evolutionary computation PSO 粒子群
上传时间: 2016-04-26
上传用户:zhuimenghuadie
基于粒子群优化的神经网络训练算法研究论文 摘 要: 本文提出了基于连接结构优化的粒子群优化算法(SPSO) 用于神经网络训练,该算法在训练神经网络权 值的同时优化其连接结构,删除冗余连接,使神经网络获得与模式分类问题匹配的信息处理能力. 经SPSO 训练的神经 网络应用于Iris ,Ionosphere 以及Breast cancer 模式分类问题,能够部分消除冗余分类参数及冗余连接结构对分类性能 的影响. 与BP 算法及遗传算法比较,该算法在提高分类误差精度的同时可加快训练收敛的速度. 仿真结果表明,SPSO是有效的神经网络训练算法
上传时间: 2013-11-30
上传用户:myworkpost
针对基本蚁群算法在机器人路径规划问题中容易陷入局部最优的问题,提出了一种改进的蚁群算法,利用遗传算法加入了变异因子使最优路径产生变异,从而降低了蚁群算法陷入局部极小的可能性,同时改善了基本蚁群算法不收敛或收敛速度比较慢的缺点,加快了收敛速度,增加了最优解的多样性。
上传时间: 2013-11-11
上传用户:zuozuo1215
粒子群优化算法的源代码
上传时间: 2015-01-24
上传用户:Divine
粒子群优化算法(c++版)
上传时间: 2015-02-07
上传用户:hustfanenze