虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

跳频技术

跳频技术(Frequency-HoppingSpreadSpectrum;FHSS)在同步、且同时的情况下,收发两端以特定型式的窄频载波来传送讯号,对于一个非特定的接收器,FHSS所产生的跳动讯号对它而言,也只算是脉冲噪声。FHSS所展开的讯号可依特别设计来规避噪声或One-to-Many的非重复的频道,并且这些跳频讯号必须遵守FCC的要求,使用75个以上的跳频讯号、且跳频至下一个频率的最大时间间隔(DwellTime)为400ms。
  • 基于QPSK调制的扩频系统的FPGA实现

    QPSK是一种线性窄带数字调制技术,具有频谱利用率高、频谱特性好、抗衰落性能强和可用非相干解调等特点。扩频通信是从军事通信中发展起来的一种高性能通信技术,具有抗干扰、抗多径能力强和保密性好等优点,在移动通信和卫星通信中得到广泛应用。所以将QPSK技术应用亍扩频通信具有重要的工程意义。 本文对QPSK调制的扩频系统的FPGA实现进行了研究。本文介绍了扩频通信的原理及发展现状,并对QPSK调制的原理进行了详细阐述。本文设计的扩频通信系统主要包括串并/并串转换、差分编/解码、DDS、扩频/解扩、QPSK调制/解调等模块,基于Altera公司的Quartus Ⅱ 4.1开发平台对以上各模块进行了设计和时序仿真.仿真结果证明:该系统能正确工作,完成了预定的目标。 本文设计的基于FPGA的扩频通信系统具有集成度高、可软件升级等优点,这为设计更高集成度和灵活性的通信系统提供了基础。

    标签: QPSK FPGA 调制 扩频系统

    上传时间: 2013-06-19

    上传用户:zzy7826

  • 软件无线电中数字下变频技术研究

    软件无线电(SDR,Software Defined Radio)由于具备传统无线电技术无可比拟的优越性,已成为业界公认的现代无线电通信技术的发展方向。理想的软件无线电系统强调体系结构的开放性和可编程性,减少灵活性著的硬件电路,把数字化处理(ADC和DAC)尽可能靠近天线,通过软件的更新改变硬件的配置、结构和功能。目前,直接对射频(RF)进行采样的技术尚未实现普及的产品化,而用数字变频器在中频进行数字化是普遍采用的方法,其主要思想是,数字混频器用离散化的单频本振信号与输入采样信号在乘法器中相乘,再经插值或抽取滤波,其结果是,输入信号频谱搬移到所需频带,数据速率也相应改变,以供后续模块做进一步处理。数字变频器在发射设备和接收设备中分别称为数字上变频器(DUC,Digital Upper Converter)和数字下变频器(DDC,Digital Down Converter),它们是软件无线电通信设备的关键部什。大规模可编程逻辑器件的应用为现代通信系统的设计带来极大的灵活性。基于FPGA的数字变频器设计是深受广大设计人员欢迎的设计手段。本文的重点研究是数字下变频器(DDC),然而将它与数字上变频器(DUC)完全割裂后进行研究显然是不妥的,因此,本文对数字上变频器也作适当介绍。 第一章简要阐述了软件无线电及数字下变频的基本概念,介绍了研究背景及所完成的主要研究工作。 第二章介绍了数控振荡器(NCO),介绍了两种实现方法,即基于查找表和基于CORDIC算法的实现。对CORDIc算法作了重点介绍,给出了传统算法和改进算法,并对基于传统CORDIC算法的NCO的FPGA实现进行了EDA仿真。 第三章介绍了变速率采样技术,重点介绍了软件无线电中广泛采用的级联积分梳状滤波器 (cascaded integratot comb, CIC)和ISOP(Interpolated Second Order Polynomial)补偿法,对前者进行了基于Matlab的理论仿真和FPGA实现的EDA仿真,后者只进行了基于Matlab的理论仿真。 第四章介绍了分布式算法和软件无线电中广泛采用的半带(half-band,HB)滤波器,对基于分布式算法的半带滤波器的FPGA实现进行了EDA仿真,最后简要介绍了FIR的多相结构。 第五章对数字下变频器系统进行了噪声综合分析,给出了一个噪声模型。 第六章介绍了数字下变频器在短波电台中频数字化应用中的一个实例,给出了测试结果,重点介绍了下变频器的:FPGA实现,其对应的VHDL程序收录在本文最后的附录中,希望对从事该领域设计的技术人员具有一定参考价值。

    标签: 软件无线电 数字下变频 技术研究

    上传时间: 2013-06-09

    上传用户:szchen2006

  • 视频采集与传输FPGA实现技术的研究

    FPGA 技术是图像处理领域的一个重要的研究课题,近年来倍受人们的关注。本文研究了视频信号的采集、显示以及通过网络进行传输的方法。并提出了一套基于FPGA 的实现方案。 系统可以分为采集控制模块、显示控制模块和网络传输控制模块3 部分。视频信号的采集用到了视频处理芯片SAA7113,通过FPGA 对其初始化,可以得到经过A/D 转换的YUV 格式视频信号,利用采集控制模块可以将这些视频信号保存到SRAM 中去。显示控制模块读出SRAM 中的视频信号,进行YUV 格式到RGB 格式的转换以及帧频变换等操作,再利用VGA 显示芯片THS8134 就可以将采集到的视频信号在LCD 上显示出来。基于IEEE802.3 协议的网络传输控制模块将YUV 格式的视频信号进行添加报头、CRC 校验码等操作后,将其变成一个MAC 帧,可以在以太网络中传输。 设计选用硬件描述语言Verilog HDL,在开发工具QuartusII 中完成软核的综合、布局布线、汇编,并最终在QuartusII 和Active-HDL 中进行时序仿真验证。 对设计的验证采取的是由里及外的方式,先对系统主模块的功能进行验证,再模拟外部器件对设计的接口进行验证。验证流程是功能仿真、时序仿真、板级调试,最终通过了系统测试,验证了该设计的功能。

    标签: FPGA 视频采集 传输 实现技术

    上传时间: 2013-07-21

    上传用户:baobao9437

  • 采用FemtoCharge技术的高速、高分辨率、低功耗的新一代ADC

    先进的系统架构和集成电路设计技术,使得模数转换器 (ADC) 制造商得以开发出更高速率和分辨率,更低功耗的产品。这样,当设计下一代的系统时,ADC设计人员已经简化了很多系统平台的开发。例如,同时提高ADC采样率和分辨率可简化多载波、多标准软件无线电系统的设计。这些软件无线电系统需要具有数字采样非常宽频范围,高动态范围的信号的能力,以同步接收远、近端发射机的多种调制方式的高频信号。同样,先进的雷达系统也需要提高ADC采样率和分辨率,以改善灵敏度和精度。在满足了很多应用的具体需求,ADC的主要性能有了很大的提高的同时,ADC的功耗也有数量级的下降,进一步简化了系统散热设计和更小尺寸产品的设计。

    标签: FemtoCharge ADC 高分辨率 低功耗

    上传时间: 2013-10-22

    上传用户:meiguiweishi

  • 通信系统中数字上变频技术的研究与设计

    为了将通信系统中数字基带信号调制到中频信号上,采用数字上变频技术,通过对数字I、Q两路基带信号进行FIR成形滤波、半带插值滤波、数字混频处理得到正交调制后的中频信号,最后经MATLAB仿真分析得到相应的时域和频域图,来验证电路设计的有效性。

    标签: 通信系统 数字 变频技术

    上传时间: 2013-10-22

    上传用户:1318695663

  • ADI处理器实用丛书-高速设计技术

    本书内容包括三大部分:第1 部分从运算放大器的基本概念和理论出发,重点介绍了运算放大器的原理与设计,以及在各种电子系统中的应用,包括视频应用、RF/IF 子系统(乘法器、调制器和混频器)等;第2 部分主要介绍了高速采样和高速ADC 及其应用、高速DAC 及其应用、以及DDS 系统与接收机子系统等;第3 部分介绍了有关高速硬件设计技术,如仿真、建模、原型、布局、去藕与接地,以及EMI 与RFI设计考虑等。   书中内容既有完整的理论分析,又有具体的实际应用电路,还包括许多应用技巧。特别适合电子电路与系统设计工程师、高等院校相关专业师生阅读。

    标签: ADI 处理器 高速设计

    上传时间: 2013-11-16

    上传用户:qitiand

  • 宽带射频功率放大器的数字预失真技术研究

    本课题主要研究对象为数字预失真技术中的功放模型的建立及数字预失真算法的研究。功放的数学模型主要分为无记忆模型和记忆模型,分析了不同模型的参数估计的方法。针对以往常见的模型反转数字预失真算法,课题分析并使用了新颖的间接学习(indirect learning)数字预失真算法,从而有效避免了无法对功放模型进行求逆的缺陷,并在此架构下仿真了不同功放模型的参数估计对于数字预失真效果的影响。针对WCDMA移动通信基站系统中使用的宽带功率放大器,使用ADS和MATLAB软件联合仿真的形式来评估整个DPD系统的性能并使用实际功放进行了测试。

    标签: 宽带 射频功率放大器 数字预失真 技术研究

    上传时间: 2013-10-12

    上传用户:问题问题

  • 宽频带高功率射频脉冲功率放大器

    利用MOS场效应管(MOSFET),采取AB类推挽式功率放大方式,采用传输线变压器宽带匹配技术,设计出一种宽频带高功率射频脉冲功率放大器模块,其输出脉冲功率达1200W,工作频段0.6M~10MHz。调试及实用结果表明,该放大器工作稳定,性能可靠

    标签: 宽频带 高功率 射频 脉冲功率放大器

    上传时间: 2013-11-17

    上传用户:waitingfy

  • 时钟分相技术应用

    摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79  文献标识码:A   文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。

    标签: 时钟 分相 技术应用

    上传时间: 2013-12-17

    上传用户:xg262122

  • 微弱信号选频放大电路的研制

    为提高弱信号检测中的信噪比, 常采用选频放大电路放大微弱信号, 然后利用自相关检测技术只提取所需信号, 抑制噪声干扰信号。

    标签: 微弱信号 选频放大电路

    上传时间: 2014-12-24

    上传用户:hopy