虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

视频<b>编码</b>

  • 汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation

    汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C

    标签: the animation Simulate movement

    上传时间: 2017-02-11

    上传用户:waizhang

  • 将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言

    将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)

    标签: 语言 抽象 字母

    上传时间: 2013-12-19

    上传用户:aix008

  • 【问题描述】 在一个N*N的点阵中

    【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。

    标签: 点阵

    上传时间: 2014-06-21

    上传用户:llandlu

  • 离散实验 一个包的传递 用warshall

     实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); } 

    标签: warshall 离散 实验

    上传时间: 2016-06-27

    上传用户:梁雪文以

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    标签: 道理特分解法

    上传时间: 2018-05-20

    上传用户:Aa123456789

  • 提出了一种基于样本的分级检索 MPEG 视频的新方法:首先用I 帧的dct_dc_size 字段快速粗检,然后用断层摄影(tomography)法分析B 帧运动矢 量的时空分布特性以进一步缩小结果

    提出了一种基于样本的分级检索 MPEG 视频的新方法:首先用I 帧的dct_dc_size 字段快速粗检,然后用断层摄影(tomography)法分析B 帧运动矢 量的时空分布特性以进一步缩小结果集,最后用DC 图像的精确匹配方法验证检索结果.试验结果表明,本方法 所需计算量较小,且可保证较高的检索精度.

    标签: dct_dc_size tomography MPEG

    上传时间: 2013-12-30

    上传用户:独孤求源

  • 实现最优二叉树的构造;在此基础上完成哈夫曼编码器与译码器。 假设报文中只会出现如下表所示的字符: 字符 A B C D E F G H I J K L M N 频度 186 64 13 22

    实现最优二叉树的构造;在此基础上完成哈夫曼编码器与译码器。 假设报文中只会出现如下表所示的字符: 字符 A B C D E F G H I J K L M N 频度 186 64 13 22 32 103 21 15 47 57 1 5 32 20 57 字符 O P Q R S T U V W X Y Z , . 频度 63 15 1 48 51 80 23 8 18 1 16 1 6 2 要求完成的系统应具备如下的功能: 1.初始化。从终端(文件)读入字符集的数据信息,。建立哈夫曼树。 2.编码:利用已建好的哈夫曼树对明文文件进行编码,并存入目标文件(哈夫曼码文件)。 3.译码:利用已建好的哈夫曼树对目标文件(哈夫曼码文件)进行编码,并存入指定的明文文件。 4.输出哈夫曼编码文件:输出每一个字符的哈夫曼编码。

    标签: 186 字符 13 64

    上传时间: 2014-11-23

    上传用户:shanml

  • 在数据加密和数据压缩中常需要对特殊的字符串进行编码。给定的字母表A 由26 个小 写英文字母组成A={a,b,…,z}。该字母表产生的升序字符串是指字符串中字母按照从左到 右出现的次序与字母在字母

    在数据加密和数据压缩中常需要对特殊的字符串进行编码。给定的字母表A 由26 个小 写英文字母组成A={a,b,…,z}。该字母表产生的升序字符串是指字符串中字母按照从左到 右出现的次序与字母在字母表中出现的次序相同,且每个字符最多出现1 次。例如, a,b,ab,bc,xyz 等字符串都是升序字符串。对于任意长度不超过6 的升序字符串,迅速计算出它在上述字典中的编码。

    标签: 字母 字符串 数据加密 数据压缩

    上传时间: 2016-05-12

    上传用户:邶刖

  • 一个QEP电路的verilog代码。输入信号是光电编码器的A相和B相信号和一个处理时钟

    一个QEP电路的verilog代码。输入信号是光电编码器的A相和B相信号和一个处理时钟,输出的是计数信号和方向信号。

    标签: verilog QEP 电路 代码

    上传时间: 2014-01-21

    上传用户:wangdean1101

  • 费诺编码的步骤: A 将概率按从大到小的顺序排列 B 按编码进制数将概率分组

    费诺编码的步骤: A 将概率按从大到小的顺序排列 B 按编码进制数将概率分组,使每组概率和尽可能接近或相等。 C 给每组分配一位码元 D 将每一分组再按同样原则划分,重复b和c,直到概率不再可分为止

    标签: 编码 概率 分组 进制数

    上传时间: 2016-06-24

    上传用户:xinyuzhiqiwuwu