随着光伏发电系统快速发展,以及电动汽车充电桩的普及,传统的剩余电流保护器无法满足实际需求。介绍了一款B型剩余电流保护器,采用磁调制剩余电流互感器和零序电流互感器采集剩余电流。根据GB/T 22794—2017标准要求,可识别1 kHz及以下的正弦交流、带和不带直流分量的脉动直流、平滑直流等剩余电流信号。经信号调理电路将电压信号送到单片机进行采集和判断。通过试验测试,该样机在测试精度和速度上均符合国家标准的相关要求。The rapid development of photovoltaic power generation systems and the popularity of electric vehicle charging piles make the traditional residual current protective devices unable to meet the actual demand.This paper proposed a type B residual current protective device,which uses the magnetically modulated residual current transformer and the zero sequence current transformer to acquire the residual current.According to the requirements of GB/T 22794—2017,the type B residual current protective device can detect sinusoidal AC residual current of 1kHz and below 1kHz,pulsating DC residual current with and without DC component,smooth DC residual current and so on.The signal processing circuit sends the voltage signal to the MCU for acquisition and judgment.Through experimental tests,the device meets the relevant requirements of national standards in terms of test accuracy and speed.
标签: 电流保护器
上传时间: 2022-03-27
上传用户:
为了克服传统功率MOS 导通电阻与击穿电压之间的矛盾,提出了一种新的理想器件结构,称为超级结器件或Cool2MOS ,CoolMOS 由一系列的P 型和N 型半导体薄层交替排列组成。在截止态时,由于p 型和n 型层中的耗尽区电场产生相互补偿效应,使p 型和n 型层的掺杂浓度可以做的很高而不会引起器件击穿电压的下降。导通时,这种高浓度的掺杂使器件的导通电阻明显降低。由于CoolMOS 的这种独特器件结构,使它的电性能优于传统功率MOS。本文对CoolMOS 导通电阻与击穿电压关系的理论计算表明,对CoolMOS 横向器件: Ron ·A = C ·V 2B ,对纵向器件: Ron ·A = C ·V B ,与纵向DMOS 导通电阻与击穿电压之间Ron ·A = C ·V 2. 5B 的关系相比,CoolMOS 的导通电阻降低了约两个数量级。
上传时间: 2013-10-21
上传用户:1427796291
关于PCB封装的资料收集整理. 大的来说,元件有插装和贴装.零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。是纯粹的空间概念.因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装。像电阻,有传统的针插式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD)这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD 元件放上,即可焊接在电路板上了。晶体管是我们常用的的元件之一,在DEVICE。LIB库中,简简单单的只有NPN与PNP之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN的2N3054,则有可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-52等等,千变万化。还有一个就是电阻,在DEVICE 库中,它也是简单地把它们称为RES1 和RES2,不管它是100Ω 还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决定的我们选用的1/4W 和甚至1/2W 的电阻,都可以用AXIAL0.3 元件封装,而功率数大一点的话,可用AXIAL0.4,AXIAL0.5等等。现将常用的元件封装整理如下:电阻类及无极性双端元件:AXIAL0.3-AXIAL1.0无极性电容:RAD0.1-RAD0.4有极性电容:RB.2/.4-RB.5/1.0二极管:DIODE0.4及DIODE0.7石英晶体振荡器:XTAL1晶体管、FET、UJT:TO-xxx(TO-3,TO-5)可变电阻(POT1、POT2):VR1-VR5这些常用的元件封装,大家最好能把它背下来,这些元件封装,大家可以把它拆分成两部分来记如电阻AXIAL0.3 可拆成AXIAL 和0.3,AXIAL 翻译成中文就是轴状的,0.3 则是该电阻在印刷电路板上的焊盘间的距离也就是300mil(因为在电机领域里,是以英制单位为主的。同样的,对于无极性的电容,RAD0.1-RAD0.4也是一样;对有极性的电容如电解电容,其封装为RB.2/.4,RB.3/.6 等,其中“.2”为焊盘间距,“.4”为电容圆筒的外径。对于晶体管,那就直接看它的外形及功率,大功率的晶体管,就用TO—3,中功率的晶体管,如果是扁平的,就用TO-220,如果是金属壳的,就用TO-66,小功率的晶体管,就用TO-5,TO-46,TO-92A等都可以,反正它的管脚也长,弯一下也可以。对于常用的集成IC电路,有DIPxx,就是双列直插的元件封装,DIP8就是双排,每排有4个引脚,两排间距离是300mil,焊盘间的距离是100mil。SIPxx 就是单排的封装。等等。值得我们注意的是晶体管与可变电阻,它们的包装才是最令人头痛的,同样的包装,其管脚可不一定一样。例如,对于TO-92B之类的包装,通常是1 脚为E(发射极),而2 脚有可能是B 极(基极),也可能是C(集电极);同样的,3脚有可能是C,也有可能是B,具体是那个,只有拿到了元件才能确定。因此,电路软件不敢硬性定义焊盘名称(管脚名称),同样的,场效应管,MOS 管也可以用跟晶体管一样的封装,它可以通用于三个引脚的元件。Q1-B,在PCB 里,加载这种网络表的时候,就会找不到节点(对不上)。在可变电阻
上传时间: 2013-11-03
上传用户:daguogai
A) 实现虚拟存储B) 实现对文件的按名存取C) 实现对文件的按内容存取D) 实现对文件的 高速输入输出(17) 分页显示当前文件 ... A) 执行SPLIB B) 执行SPDOS C) 装载拼音模块D) 装载五笔字型输入模块(32) 在汉字输入状态下,按下Shift+a组合键后,输入了__。
上传时间: 2013-12-23
上传用户:zhoujunzhen
剖析Intel IA32 架构下C 语言及CPU 浮点数机制 Version 0.01 哈尔滨工业大学 谢煜波 (email: xieyubo@126.com 网址:http://purec.binghua.com) (QQ:13916830 哈工大紫丁香BBSID:iamxiaohan) 前言 这两天翻看一本C 语言书的时候,发现上面有一段这样写到 例:将同一实型数分别赋值给单精度实型和双精度实型,然后打印输出。 #include <stdio.h> main() { float a double b a = 123456.789e4 b = 123456.789e4 printf(“%f\n%f\n”,a,b) } 运行结果如下:
标签: Version xieyubo Intel email
上传时间: 2013-12-25
上传用户:徐孺
设B是一个n×n棋盘,n=2k,(k=1,2,3,…)。用分治法设计一个算法,使得:用若干个L型条块可以覆盖住B的除一个特殊方格外的所有方格。其中,一个L型条块可以覆盖3个方格。且任意两个L型条块不能重叠覆盖棋盘
标签:
上传时间: 2013-12-16
上传用户:脚趾头
B+树算法:从磁盘读取数据文件,可以进行插入,删除操作,两种方式打印出元素信息。树型打印和依关键字大小打印。
上传时间: 2015-10-31
上传用户:silenthink
综合2叉树及B+树优点的能根据增删改而分裂或合并的完整程序(现在以8bit(BYTE key)为关键字,可扩充到64bit的double为key,用户数据包现在以float ton表示,可扩充到任意结构struct)
上传时间: 2017-02-19
上传用户:498732662
设B是一个n×n棋盘,n=2k,(k=1,2,3,…)。用分治法设计一个算法,使得:用若干个L型条块可以覆盖住B的除一个特殊方格外的所有方格。其中,一个L型条块可以覆盖3个方格。且任意两个L型条块不能重叠覆盖棋盘。
标签:
上传时间: 2013-12-19
上传用户:xc216
采用德布尔算法进行B样条的生成,可以用来进行型线优化设计前的参数化处理
上传时间: 2017-07-03
上传用户:lx9076