matlab,PSO-RBF神经网络的训练模型,可以参考学习
上传时间: 2019-12-03
上传用户:dadashizi
神经网络在智能机器人导航系统中的应用研究1神经网络在环境感知中的应 用 对环境 的感 知 ,环境模型 妁表示 是非常重要 的。未 知 环境中的障碍物的几何形状是不确定的,常用的表示方浩是 槽格法。如果用册格法表示范围较大的工作环境,在满足 精度要求 的情况下,必定要占用大量的内存,并且采用栅 格法进行路径规划,其计算量是相当大的。Kohon~n自组织 神经瞬络为机器人对未知环境的蒜知提供了一条途径。 Kohone~冲经网络是一十自组织神经网络,其学习的结 果能体现出输入样本的分布情况,从而对输入样本实现数 据压缩 。基于 网络 的这些特 性,可采 用K0h0n曲 神经元 的 权向量来表示 自由空间,其方法是在 自由空间中随机地选 取坐标点xltl【可由传感器获得】作为网络输入,神经嘲络通 过对大量的输八样本的学习,其神经元就会体现出一定的 分布形 式 学习过程如下:开 始时网络的权值随机地赋值 , 其后接下式进行学 习: , 、 Jm(,)+叫f)f,)一珥ff)) ∈N,(f) (,) VfeN.(f1 其 中M(f1:神经元 1在t时刻对 应的权值 ;a(∽ 谓整系 数 ; (『l网络的输八矢量;Ⅳ():学习的 I域。每个神经元能最 大限度 地表示一 定 的自由空间 。神经 元权 向量的最 小生成 树可以表示出自由空问的基本框架。网络学习的邻域 (,) 可 以动 态地 定义 成矩形 、多边 形 。神经 元数量 的选取取 决 于环境 的复杂度 ,如果神 经元 的数量 太少 .它们就 不能 覆 盖整十空间,结果会导致节点穿过障碍物区域 如果节点 妁数量太大 .节点就会表示更多的区域,也就得不到距障 碍物的最大距离。在这种情况下,节点是对整个 自由空间 的学 习,而不是 学习最 小框架空 间 。节 点的数 量可 以动态 地定义,在每个学习阶段的结柬.机器人会检查所有的路 径.如检铡刊路径上有障碍物 ,就意味着没有足够的节点 来 覆盖整 十 自由窑 间,需要增加 网络节点来 重新学 习 所 138一 以为了收敛于最小框架表示 ,应该采用较少的网络 节点升 始学习,逐步增加其数量。这种方法比较适台对拥挤的'E{= 境的学习,自由空间教小,就可用线段表示;若自由空问 较大,就需要由二维结构表示 。 采用Kohonen~冲经阿络表示环境是一个新的方法。由 于网络的并行结构,可在较短的时间内进行大量的计算。并 且不需要了解障碍物的过细信息.如形状、位置等 通过 学习可用树结构表示自由空问的基本框架,起、终点问路 径 可利用树的遍 历技术报容易地被找到 在机器人对环境的感知的过程中,可采用人】:神经嘲 络技术对 多传 感器的信息进 行融台 。由于单个传感器仅能 提 供部分不 完全 的环境信息 ,因此只有秉 甩 多种传感器 才 能提高机器凡的感知能力。 2 神经 网络在局部路径规射中的应 用 局部路径 规删足称动吝避碰 规划 ,足以全局规荆为指 导 利用在线得到的局部环境信息,在尽可能短的时问内
上传时间: 2022-02-12
上传用户:qingfengchizhu
随着人类社会的进步,科学技术的发展日新月异,模拟人脑神经网络的人工神经网络已取得了长足的发展。经过半个多世纪的发展,人工神经网络在计算机科学,人工智能,智能控制等方面得到了广泛的应用。当代社会是一个讲究效率的社会,科技更新领域也是如此。在人工神经网络研究领域,算法的优化显得尤为重要,对提高网络整体性能举足轻重.BP神经网络模型是目前应用最为广泛的一种神经网络模型,对于解决非线性复杂问题具有重要的意义。但是BP神经网络有其自身的一些不足(收敛速度慢和容易陷入局部极小值问题),在解决某些现实问题的时候显得力不从心。针对这个问题,本文利用遗传算法的并行全局搜索的优势,能够弥补BP网络的不足,为解决大规模复杂问题提供了广阔的前景。本文将遗传算法与BP网络有机地结合起来,提出了一种新的网络结构,在稳定性、学习性和效率方面都有了很大的提高。基于以上的研究目的,本文首先设计了BP神经网络结构,在此基础上,应用遗传算法进行优化,达到了加快收敛速度和全局寻优的效果。本文借助MATLAB平台,对算法的优化内容进行了仿真实验,得出的效果也符合期望值,实现了对BP算法优化的目的。关键词:生物神经网络:人工神经网络;BP网络;遗传算法;仿真随着电子计算机的问世及发展,人们试图去了解人的大脑,进而构造具有人类思维的智能计算机。在具有人脑逻辑推理延伸能力的计算机战胜人类棋手的同时,引发了人们对模拟人脑信息处理的人工神经网络的研究。1.1研究背景人工神经网络(Artificial Noural Networks,ANN)(注:简称为神经网络),是一种数学算法模型,能够对信息进行分布式处理,它模仿了动物的神经网络,是对动物神经网络的一种具体描述。这种网络依赖系统的复杂程度,通过调节内部大量节点之间的关系,最终实现信息处理的目的。人工神经网络可以通过对输入输出数据的分析学习,掌握输入与输出之间的潜在规则,能够对新数据进行分析计算,推算出输出结果,因为人工神经网络具有自适应和自学习的特性,这种学习适应的过程被称为“训练"。
上传时间: 2022-06-16
上传用户:jiabin
本书包含四个组成部分:导论,监督学习,无监督学习,神经网络动力学模型。导论部 分介绍神经元模型、神经网络结构和机器学习的基本概念和理论。监督学习讨论感知机学习 规则,有监督的Hebb学习,Widrow-Hoff学习算法,反向传播算法及其变形,RBF网络,正则 化网络,支持向量机以及委员会机器。无监督学习包括主分量分析,自组织特征映射模型的 竞争学习形式,无监督学习的信息理论,植根于统计力学的随机学习机器,最后是与动态规 划相关的增强式学习。
标签: 神经网络
上传时间: 2022-06-21
上传用户:fliang
本书主要讲述神经网络的基本概念,介绍实用的网络模型、学习规则和训练方法。全书分19章,内容涵盖神经元模型和网络结构、感知机学习规则、有监督的Hebb学习、Widrow—Hoff学习算法、反向传播算法及其变形、联想学习、竞争网络、Grossberg网络、自适应谐振理论和Hopfield网络。书中注重对数学分析方法和性能优化的讨论,强调神经网络在模式识别、信号处理以及控制系统等实际工程问题中的应用。同时本书包含大量例题、习题,并配有基于MATLAB软件包的“神经网络设计演示&
标签: 神经网络
上传时间: 2022-06-21
上传用户:默默
木书以神经网络结构为主线,以学习算法为副线,详细介绍了神经网络结构和算法步骤,并给出实例和练习,目的是使读者易看懂,能动手,会应用。主要内容包括:人工神经网络简介、单层前向网络及LMS学习算法、多层前向网络及BP学习算法、支持向量机及其学习算法、 Hopfield神经网络与联想记忆、随机神经网络及模拟退火算法、竞争神经网络和协同神经网络。每章均给出了基于 MATLAB的仿真实例以及练习。
标签: 人工神经网络
上传时间: 2022-07-12
上传用户:
无刷直流电机(BLDCM)是随着电机控制技术、电力电子技术和微电子技术的发展而出现的一种新型电机。它是在有刷直流电机的基础上发展起来的。无刷直流电机具有交流电机的结构简单、运行可靠、维护方便等一系列特点,又具有直流电机的运行效率高、无励磁损耗以及调速性能好等诸多优点,在很多场合有广泛的应用前景,成为了国内外研究的热点。无刷直流电机传统的理论部分分析和设计方法已经比较成熟,因此对无刷直流电机控制策略的研究就显得十分重要。 PID控制以其结构简单、可靠性高、易于工程实现等优点至今仍被广泛应用。在系统模型参数变化不大的情况下,PID控制性能优良。但在工业上有许多无法建立精确数学模型的复杂控制对象和非线性控制对象,若采用传统的PID进行控制的话,那么很难获得比较理想的控制效果。 对于无刷直流电机而言,它是一个多变量、强耦合的非线性系统,固定参数的PID调节器无法得到很理想的控制性能指标。基于以上原因,本文以无刷直流电机为控制对象,通过分析无刷直流电机的数学模型,以BP神经网络为基础,设计了应用于无刷直流电机的神经网络PID控制器。 在MATLAB平台上,先利用神经网络PID控制器,给出相应的控制算法,对典型的参数时变非线性系统的控制进行了仿真研究。仿真结果表明,同传统PID控制器相比,神经网络PID控制器对模型、环境具有较好的适应能力与较强的鲁棒性,有效的改善了系统的控制结果,达到了预期的目的。随后利用SIMULNK建立了无刷直流电机控制系统的仿真模型。分别采用普通PID控制器和神经网络PID控制器对电机的不同运行状况进行了仿真分析。仿真结果验证了所建模型的正确性,并证明了神经网络控制的优越性。
上传时间: 2013-08-04
上传用户:YYRR
·基于BP神经网络的字符识别
上传时间: 2013-06-17
上传用户:brucewan
·鲁棒控制7本.神经网络10本
上传时间: 2013-05-20
上传用户:lizhen9880
·基于PCA和BP神经网络算法的车牌字符识别
上传时间: 2013-04-24
上传用户:maizezhen