在传统正温度系数电流基础上,增加两种不同材料的电阻以实现带隙基准的二阶温度补偿,采用具有反馈偏置的折叠共源共栅运算放大器,使得所设计的带隙基准电路,具有较高的精度和温度稳定性。
上传时间: 2013-10-18
上传用户:604759954
在医用电阻抗层析成像(Electrical Impedance Tomography)系统中电压控制电流源的性能十分重要,大部分报道的电压控电流源电路在低频时有较高的输出阻抗但是在高频时性能大幅减弱。通过分析生物阻抗测量系统对电压控制电流源的需求,同时回顾一些已有的电压控制电流源电路,包括双运放负反馈电路、跨导运算放大器、AD844,设计了一种基于AD8610的电压控制电流源。并通过电路实验验证了此电压控制电流源的性能,同时提出了改进方案。该电压电流源不仅频率和幅值可控、精度高,而且有较高的输出阻抗。
上传时间: 2013-11-05
上传用户:heart_2007
电源电路是指车载功放的电源部分的设计,使用的电路形式和特点。对于一个功放来说,其电源部分非常重要,专业功放的电源电路的容量往往是根据放大器的实际消耗,再加足够的富裕量,因此比同样标称功率的普通功放的容量大得多,因此电源电路可以从一个侧面反映出整个功放的好坏。常见的电源电路有D级放大器电路、MOS
上传时间: 2014-01-14
上传用户:我叫李小进
电源的工作原理其实就是D类功率放大器,即串联型电压开关放大器,如图1.36所示。
上传时间: 2013-11-08
上传用户:ks201314
一种简单的调整输出阻抗的方法如图( % $) 所示。该电路由两级放大器组成,前级为电流放大器,后级为电压放大器,#*是模块电流的检测电阻器,模块电流!!流过#*产生电压降$*,$*便是模块电流的检测信号。$*经电流放大器放大,其输出电压$"与模块输出的反馈电压$+一起加到电压放大器的反相输入端,这个输入信号综合了模块电流的变化和模块输入电压的变化。电压放大器的同相输入端是基准电压$,-.,两个输入电压比较并经误差放大后,输出电压$/,$/控制模块内的012和驱动级(输出级),自动调节模块的输出电压。
上传时间: 2013-10-15
上传用户:zjf3110
摘要:采用共源共栅运算放大器作为驱动,设计了一种高电源抑制比和低温度系数的带隙基准电压源电路,并在TSMC0.18Um CMOS工艺下,采用HSPICE进行了仿真.仿真结果表明:在-25耀115益温度范围内电路的温漂系数为9.69伊10-6/益,电源抑制比达到-100dB,电源电压在2.5耀4.5V之间时输出电压Vref的摆动为0.2mV,是一种有效的基准电压实现方法.关键词:带隙基准电压源;电源抑制比;温度系数
上传时间: 2013-11-19
上传用户:王成林。
广州致远电子有限公司近期推出了系列的工业级微功率DC-DC电源模块,能够广泛应用于低频模拟电路,大功率IGBT驱动,纯数字电路,模拟前端隔离电路,RS232/RS485/D422隔离通讯接口,CAN-BUS隔离通讯接口,运算放大器电源和手持便携仪表等多种场合。其全面性与成熟可靠的设计,可以解决用户在电源和模拟前端部分设计中所遇到的较多难题,并可以节省开发时间,使用户的产品更快推出市场.
上传时间: 2013-10-17
上传用户:妄想演绎师
漏电保护器的工作原理:漏电保护器主要包括检测元件(零序电流互感器)、中间环节(包括放大器、比较器、脱扣器等)、执行元件(主开关)以及试验元件等几个部分。三相四线制供电系统的漏电保护器工作原理示意图。TA 为零序电流互感器,GF 为主开关,TL为主开关的分励脱扣器线圈。在被保护电路工作正常,没有发生漏电或触电的情况下,由克希荷夫定律可知,通过TA 一次侧的电流相量和等于零,即:这样TA 的二次侧不产生感应电动势,漏电保护器不动作,系统保持正常供电。当被保护电路发生漏电或有人触电时,由于漏电电流的存在,通过TA一次侧各相电流的相量和不再等于零,产生了漏电电流Ik。在铁心中出现了交变磁通。在交变磁通作用下,TL二次侧线圈就有感应电动势产生,此漏电信号经中间环节进行处理和比较,当达到预定值时,使主开关分励脱扣器线圈TL 通电,驱动主开关GF 自动跳闸,切断故障电路,从而实现保护。用于单相回路及三相三线制的漏电保护器的工作原理与此相同,不赘述。
上传时间: 2013-10-19
上传用户:zhangjinzj
一、实验目的 1. 学会选择变压器、整流二极管、滤波电容及集成稳 压 器来设计直流稳压电源。 2. 掌握直流稳压电源的主要性能参数及测试方法。 二、实验原理 电子设备一般都需要直流电源供电。这些直流电 除了少数直接利用干电池和直流发电机外,大多数是 采用把交流电(市电)转变为直流电的直流稳压电源。 直流稳压电源由电源变压器T、整流、滤波和稳压电路四部分组成,其原理框图如图1 所示。电网供给的交流电压u1(220V,50Hz) 经电源变压器降压后,得到符合电路需要的交流电压u2,然后由整流电路变换成方向不变、大小随时间变化的脉动电压u3,再用滤波器滤去其交流分量,就可得到比较平直的直流电压uI。但这样的直流输出电压,还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。 1、串联型稳压电源的基本原理 图2是由分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路,它由调整元件(晶体管V1);比较放大器V2、R7;取样电路R1、R2、RP,基准电压VD、R3和过流保护电路V3管及电阻R4、R5、R6等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统,其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经T2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 2、集成稳压器 能够完成稳压功能的集成稳压器种类很多,根据调整管工作在线性放大区还是工作在开关状态,将其分为线性集成稳压器和开关集成稳压器。线性集成稳压器中,由于三端式稳压器只有三个引出端子,性能稳定、价格低廉等优点,因而得到广泛的应用。三端式稳压器有两种,一种输出电压是固定的,称为固定输出三端稳压器,另一种输出电压是可调的,称为可调三端稳压器。图 4是常用的三端稳压器示意图。
标签: 直流稳压电源
上传时间: 2013-11-27
上传用户:qazxsw
同步整流技术简单介绍大家都知道,对于开关电源,在次级必然要有一个整流输出的过程。作为整流电路的主要元件,通常用的是整流二极管(利用它的单向导电特性),它可以理解为一种被动式器件:只要有足够的正向电压它就开通,而不需要另外的控制电路。但其导通压降较高,快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降。这个压降完全是做的无用功,并且整流二极管是一种固定压降的器件,举个例子:如有一个管子压降为0.7V,其整流为12V时它的前端要等效12.7V电压,损耗占0.7/12.7≈5.5%.而当其为3.3V整流时,损耗为0.7/4(3.3+0.7)≈17.5%。可见此类器件在低压大电流的工作环境下其损耗是何等地惊人。这就导致电源效率降低,损耗产生的热能导致整流管进而开关电源的温度上升、机箱温度上升--------有时系统运行不稳定、电脑硬件使用寿命急剧缩短都是拜这个高温所赐。随着电脑硬件技术的飞速发展,如GeForce 8800GTX显卡,其12V峰值电流为16.2A。所以必须制造能提供更大输出电流(如多核F1,四路12V,每路16A;3.3V和5V输出电流各高达24A)的电源转换器。而当前世界的能源紧张问题的凸现,为广大用户提供更高转换效率(如多核R80,完全符合80PLUS标准)的电源转换器就是我们整个开关电源行业的不可回避的社会责任了。如何解决这些问题?寻找更好的整流方式、整流器件。同步整流技术和通态电阻(几毫欧到十几毫欧)极低的专用功率MOSFET就是在这个时刻走上开关电源技术发展的历史舞台了!作为取代整流二极管以降低整流损耗的一种新器件,功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。因为用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。它可以理解为一种主动式器件,必须要在其控制极(栅极)有一定电压才能允许电流通过,这种复杂的控制要求得到的回报就是极小的电流损耗。在实际应用中,一般在通过20-30A电流时才有0.2-0.3V的压降损耗。因为其压降等于电流与通态电阻的乘积,故小电流时,其压降和恒定压降的肖特基不同,电流越小压降越低。这个特性对于改善轻载效率(20%)尤为有效。这在80PLUS产品上已成为一种基本的解决方案了。对于以上提到的两种整流方案,我们可以通过灌溉农田来理解:肖特基整流管可以看成一条建在泥土上没有铺水泥的灌溉用的水道,从源头下来的水源在中途渗漏了很多,十方水可能只有七、八方到了农田里面。而同步整流技术就如同一条镶嵌了光滑瓷砖的引水通道,除了一点点被太阳晒掉的损失外,十方水能有9.5方以上的水真正用于浇灌那些我们日日赖以生存的粮食。我们的多核F1,多核R80,其3.3V整流电路采用了通态电阻仅为0.004欧的功率MOSFET,在通过24A峰值电流时压降仅为20*0.004=0.08V。如一般PC正常工作时的3.3V电流为10A,则其压降损耗仅为10*0.004=0.04V,损耗比例为0.04/4=1%,比之于传统肖特基加磁放大整流技术17.5%的损耗,其技术的进步已不仅仅是一个量的变化,而可以说是有了一个质的飞跃了。也可以说,我们为用户修建了一条严丝合缝的灌溉电脑配件的供电渠道。
标签: 同步整流
上传时间: 2013-10-27
上传用户:杏帘在望