由于旋转变压器的高精度高可靠性等特点,广泛的应用于如航空、航天、船舶、兵器、雷达、通讯等领域。旋转变压器输出模拟量交流信号,经过数字处理转换为数字角度信号才能进入计算机或其他控制系统,而这种数字处理比较复杂,采用专用的旋转变压器解码芯片想达到理想的精度通常需要较高的成本,限制了它在其他领域的应用。传统的角测量系统面临的问题有:体积、重量、功耗偏大,调试、误差补偿试验复杂,费用较高。 现场可编程门阵列(FPGA)是近年来迅速发展起来的新型可编程器件。随着它的不断应用和发展,也使电子设计的规模和集成度不断提高。同时也带来了电子系统设计方法和设计思想的不断推陈出新。 本文的目的是研究利用FPGA实现旋转变压器的硬件解码算法,设计基于FPGA的旋转变压器解码系统。 在本文所设计的系统中,通过FPGA芯片产生旋转变压器的激励信号,再控制A/D转换器对旋转变压器的模拟信号的数据进行采样和转换,并对转换完的数据进行滤波处理,使用基于CORDIC算法流水线结构设计的反正切函数模块解算出偏转角θ,最后通过串行口将解算的偏差角数据输出。本文还分析了该系统误差产生的原因和提高系统精度的方法。 实验结果表明,本文所设计的旋转变压器解码器的硬件组成和软件实现基本能够较精确的完成上述的信号转换和数据运算。
上传时间: 2013-05-23
上传用户:gdgzhym
本文从工程设计和应用出发,根据某机载设备直接序列扩频(DS-SS)接收机声表面波可编程抽头延迟线(SAW.P.TDL)中频相关解扩电路的指标要求,提出了基于FPGA器件的中频数字相关解扩器的替代设计方案,通过理论分析、软件仿真、数学计算、电路设计等方法和手段,研制出了满足使用环境要求的工程化的中频数字相关器,经过主要性能参数的测试和环境温度验证试验,并在整机上进行了试验和试用,结果表明电路性能指标达到了设计要求。对工程应用中的部分问题进行了初步研究和分析,其中较详细地分析了SAW卷积器、SAW.P.TDL以及中频数字相关器在BPSK直扩信号相关解扩时的频率响应特性。 论文的主要工作在于: (1)根据某机载设备扩频接收机基于SAW.P.TDL的中频解扩电路要求,进行理论分析、电路设计、软件编程,研制基于FPGA器件的中频数字相关器,要求可在扩频接收机中原位替代原SAW相关解扩电路; (2)对中频数字相关器的主要性能参数进行测试,进行了必要的高低温等环境试验,确定电路是否达到设计指标和是否满足高低温等环境条件要求; (3)将基于FPGA的中频数字相关器装入扩频接收机,与原SAW.P.TDL中频解扩电路置换,确定与接收机的电磁兼容性、与中放电路的匹配和适应性,测试整个扩频接收机的灵敏度、动态范围、解码概率等指标是否满足接收机模块技术规范要求; (4)将改进后的扩频接收机装入某机载设备,测试与接收机相关的性能参数,整机进行高低温等主要环境试验,确定电路变化后的整机设备各项指标是否满足其技术规范要求; (5)通过对基于FPGA的中频数字相关器与SAW.P.TDL的主要性能参数进行对比测试和分析,特别是电路对频率偏移响应特性的对比分析,从而得出初步的结论。
上传时间: 2013-06-22
上传用户:徐孺
基于过采样和∑-△噪声整形技术的DAC能够可靠地把数字信号转换为高精度的模拟信号(大于等于16位)。采用这一架构进行数模转换具有诸多优点,例如极低的失配噪声和更高的可靠性,便于实现嵌入式集成等,最重要的是可以得到其他DAC结构所无法达到的精度和动态范围。在高精度测量,音频转换,汽车电子等领域有着广泛的应用价值。 本文采用∑-△结构以FPGA方式实现了一个具有高精度的数模转换器,在24比特的输入信号下,达到了约150dB的信噪比。作为一个灵活的音频DAC实现方案。该DAC可以对CD/DVD/HDCD/SACD等多种制式下的音频信号进行处理,接受并转换采样率为32/44.1/48/88.2/96/192kHz,字长为16/18/20/24比特的PCM数据,具备良好的兼容性和通用性。 由于非线性和不稳定性的存在,高阶∑-△调制器的设计与实现存在较大的难度。本文综合大量文献中的经验原则和方法,阐述了稳定的高阶高精度调制器的设计流程;并据此设计了达到24bit精度和满量程输入范围的的5阶128倍调制器。本文创新性地提出了∑-△调制器的一种高效率流水线实现结构。分析表明,与其他常见的∑-△调制器实现结构相比,本方案具有结构简单、运算单元少等优点;此外在同样信号采样率下,调制器所需的时钟频率大大降低。 文中的过采样滤波模块采用三级半带滤波器和一个可变CIC滤波器级联组成,可以达到最高128倍的过采样比,同时具有良好的通带和阻带特性。在半带滤波器的设计中采用了CSD编码,使结构得到了充分的简化。 本文提出的过采样DAC方案具有可重配置结构,让使用者能够方便地控制过采样比和调制器阶数。通过积分梳状滤波器的配置,能够获得32/64/128倍的不同过采样比,从而实现对于32~192kHz多种采样率输入的处理。在不同输入字长情况下,通过调制器的重构,则可以将调制器由高精度的5阶模式改变为功耗更低的3阶模式,满足不同分辨率信号输入时的不同精度要求。这是本文的另一创新之处。 目前,该过采样DAC已经在XilinxVirtexⅡ系列FPGA器件下得到硬件实现和验证。测试表明,对于从32kHz到192kHz的不同输入信号,该DAC模块输出1比特码流的带内信噪比均能满足24比特数据转换应用的分辨率要求。
上传时间: 2013-07-08
上传用户:从此走出阴霾
在单片机与外部环境通信的时候,就需要有一种转换器来把模拟信号变为数字信号,以便能够输送给单片机进行处理。而单片机送出的控制信号,也必须经过变换器变成模拟信号,才能为控制电路所接受。这种变换器就称为数模(D/A)转换器和模数(A/D)转换器。
上传时间: 2013-08-06
上传用户:ydd3625
数字容性隔离器的应用环境通常包括一些大型电动马达、发电机以及其他产生强电磁场的设备。暴露在这些磁场中,可引起潜在的数据损坏问题,因为电势(EMF,即这些磁场形成的电压)会干扰数据信号传输。由于存在这种潜在威胁,因此许多数字隔离器用户都要求隔离器具备高磁场抗扰度 (MFI)。许多数字隔离器技术都声称具有高 MFI,但容性隔离器却因其设计和内部结构拥有几乎无穷大的MFI。本文将对其设计进行详细的介绍。
上传时间: 2013-10-26
上传用户:litianchu
数字校准技术
上传时间: 2013-10-26
上传用户:qiaoyue
越柬越多的应用 例如过程控制、称重等 都需要高分辨率、高集成度和低价格的ADC。 新型Σ .△转换技术恰好可以满足这些要求 然而, 很多设计者对于这种转换技术并不 分了解, 因而更愿意选用传统的逐次比较ADC Σ.A转换器中的模拟部分非常简单(类似j 个Ibit ADC), 而数字部分要复杂得多, 按照功能町划分为数字滤波和抽取单元 由于更接近r 个数字器件,Σ △ADC的制造成本非常低廉.
标签: ADC
上传时间: 2013-10-24
上传用户:han_zh
摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79 文献标识码:A 文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。
上传时间: 2013-12-17
上传用户:xg262122
摘要:随着功率密度和输出功率要求的不断提高,汽车市场中汽车功率调节设计面临更加严峻的挑战。多相DC-DC 转换器架构在许多方面简化了汽车设计。Intersil 推出的ISL78220 是专门为汽车起步/停车系统、车载音频系统和HEV/EV/燃料电池系统设计的多相升压控制器。该产品获得了TS16949 认证,体现了Intersil 致力于提高这些系统电源管理和模拟产品设计、制造和发布质量,促进汽车可靠性和能效达到最高水平。
上传时间: 2013-10-13
上传用户:lliuhhui
描述了一种简易的交流数字电压表的系统设计。系统以MSP430F448为核心,该单片机内部集成了12位的A/D转换器,转换器带有内部参考源、采样保持、自动扫描特性,极大地简化了硬件设计。
上传时间: 2014-12-22
上传用户:cuibaigao