基于人工神经网络的压力传感器的温度补偿
为了在一定的温度和压力下有效改善传感器的非线性及温度变化引起的误差输出特性,提出了一种人工神经网络算法对其实现软件补偿. 它包含4 个权值的调整,分别代表输出信号的一次项,二次项以及温度的一次项,二次项系数,经过迭代以后获得一个最佳输出公式. 该公式既能够满足样本值,也能够满足非样本值,并最终可校...
为了在一定的温度和压力下有效改善传感器的非线性及温度变化引起的误差输出特性,提出了一种人工神经网络算法对其实现软件补偿. 它包含4 个权值的调整,分别代表输出信号的一次项,二次项以及温度的一次项,二次项系数,经过迭代以后获得一个最佳输出公式. 该公式既能够满足样本值,也能够满足非样本值,并最终可校...
指出了超声波在测距应用中的局限性, 并给出解决方案。着重从新的角度补偿超声传感器的误差, 提出了用BP前馈神经网络补偿超声波声速受温度、湿度变化而引起的误差。 ...
为了预报电力系统负荷,采用GRNN(广义回归网络)的方法,通过GRNN神经网络和BP神经网络建立电力系统负荷预报网络模型,用MATLAB7.0仿真,达到了预测的目的。利用GRNN神经网络预测结果准确率高,避免了BP网络预测同样的数据库,算法冗长,网络预测结果不稳定的缺点,GRNN网络具有更好的预报精...
《面向MATLAB工具箱的神经网络理论与应用》利用目前国际上流行通用的MATLAB 7.0环境,结合神经网络工具箱4.0.6版本,分别从网络构造、基本原理、学习规则以及训练过程和应用局限性几个方面,通过多层次、多方面的分析与综合,深入浅出地介绍了人工神经网络中的各种典型网络,以及各种不同神经网络之间...
基于神经网络的单片机开发...