STM32 F1系列 MCU ATIUM AD集成库 原理图库 PCB 3D封装库文件,STM32F1XXXXX全系列原理图+PCB封装库文件,共209个器件型号,CSV text has been written to file : STM32 F1.csvLibrary Component Count : 209Name Description----------------------------------------------------------------------------------------------------STM32F100C4T6B STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, TraySTM32F100C4T7B STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +105癈 Temperature, 48-Pin LQFP, TraySTM32F100C6T6B STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, TraySTM32F100C6T6BTR STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, Tape and ReelSTM32F100C6T7B STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +105癈 Temperature, 48-Pin LQFP, TraySTM32F100C8T6B STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, TraySTM32F100C8T6BTR STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, Tape and ReelSTM32F100CBT6B STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 48-Pin LQFP, TraySTM32F100CBT7B STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +105癈 Temperature, 48-Pin LQFP, TraySTM32F100R4H6B STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, TraySTM32F100R4T6B STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100R4T6BTR STM32 ARM-based 32-bit MCU Value Line with 16 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, Tape and ReelSTM32F100R6H6B STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, TraySTM32F100R6T6 STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100R6T6B STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100R6T6BTR STM32 ARM-based 32-bit MCU Value Line with 32 kB Flash, 4 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, Tape and ReelSTM32F100R8H6B STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, TraySTM32F100R8T6B STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100R8T6BTR STM32 ARM-based 32-bit MCU Value Line with 64 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, Tape and ReelSTM32F100RBH6B STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, TraySTM32F100RBH6BTR STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin TFBGA, Tape and ReelSTM32F100RBT6B STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RBT6BTR STM32 ARM-based 32-bit MCU Value Line with 128 kB Flash, 8 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, Tape and ReelSTM32F100RCT6B STM32 ARM-based 32-bit MCU Value Line with 256 kB Flash, 24 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RDT6 STM32 ARM-based 32-bit MCU Value Line with 384 kB Flash, 32 kB Internal RAM, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RDT6B STM32 ARM-based 32-bit MCU Value Line with 384 kB Flash, 32 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RET6 STM32 ARM-based 32-bit MCU Value Line with 512 kB Flash, 32 kB Internal RAM, -40 to +85癈 Temperature, 64-Pin LQFP, TraySTM32F100RET6B STM32 ARM-based 32-bit MCU Value Line with 512 kB Flash, 32 kB Internal RAM, Internal Code B, -40 to +85癈 Temperature, 64-
上传时间: 2022-04-30
上传用户:jiabin
表贴插装晶振、晶体Altium封装 AD封装库 2D+3D PCB封装库-6MB,Altium Designer设计的PCB封装库文件,集成2D和3D封装,可直接应用的到你的产品设计中。PCB库封装列表:CB Library : 晶振、晶体.PcbLibDate : 2020/6/8Time : 7:42:40Component Count : 38Component Name-----------------------------------------------OSC 455E-LIOSC 455E-WIOSC 1612-4POSC 2025-4POSC 3215-2POSC 3225-4POSC 4025-4POSC 5032-2POSC 5032-4POSC 6035-2POSC 6035-4POSC 7050-2POSC 7050-4POSC 8045-2POSC 8045-4POSC 8045-4P-COSC HC-49SOSC HC-49SMDOSC HC-49UOSC MC-146OSC MC-156OSC MC-306OSC MC-405OSC MC-406OSC UM-1OSC UM-5OSC-2x6-LIOSC-2x6-WI-AOSC-2x6-WI-BOSC-2x6-WSOSC-3x8-LIOSC-3x8-WI-AOSC-3x8-WI-BOSC-3x8-WSOSC-3x10-LIOSC-3x10-WI-AOSC-3x10-WI-BOSC-3x10-WS
标签: altium designer
上传时间: 2022-05-04
上传用户:canderile
j1939 附录a附录b
标签: j1939
上传时间: 2022-06-09
上传用户:
描述了NTC使用B值计算出实际温度与输出的电压之间的关系。
标签: ntc计算
上传时间: 2022-06-15
上传用户:
BC20-TE-B NB-Iot 评估板评估板原厂原理图V1.2。完整对应实物装置。
上传时间: 2022-06-17
上传用户:
PCB封装库0度图形制作标准。
标签: pcb
上传时间: 2022-06-28
上传用户:aben
ASR M08-B设置软件 V3.2 arduino 2560+ASRM08-B测试程序 arduino UNO+ASRM08-B测试程序语音控制台灯电路图及C51源码(不带校验码) 继电器模块设置。 ASR M08-B是一款语音识别模块。首先对模块添加一些关键字,对着该模块说出关键字,串口会返回三位的数,如果是返回特定的三位数字,还会引起ASR M08-B的相关引脚电平的变化。【测试】①打开“ASR M08-B设置软件 V3.2.exe”。②选择“串口号”、“打开串口”、点选“十六进制显示”。③将USB转串口模块连接到语音识别模块上。接线方法如下:语音模块TXD --> USB模块RXD语音模块RXD --> USB模块TXD语音模块GND --> USB模块GND语音模块3V3 --> USB模块3V3(此端为3.3V电源供电端。)④将模块的开关拨到“A”端,最好再按一次上面的大按钮(按一次即可,为了确保模块工作在正确的模式)。⑤对着模块说“开灯”、“关灯”模块会返回“0B”、“0A”,表示正常(注意:0B对应返回值010,0B对应返回值010,返回是16进制显示的嘛,设置的时候是10进制设置的)。
标签: ASR M08-B
上传时间: 2022-07-06
上传用户:aben
NCS8803 3.2.1 功能:是一颗将HDMI信号转EDP信号的转接芯片。其应用如下: 3.2.2产品特征 输入:HDMI 输出:Embedded-DisplayPort (eDP) EDP接口 1/2/4-lane eDP @ 1.62/2.7Gbps per lane HD to WQXGA (2560*1600) supported 内置EDP协议 HDMI Input HDMI 1.4a supported 支持RGB444/YCbCr444/YCbCr422 像素时钟: 340MHz 支持双通道音频输入; 参考时钟 任何频率,在19MHz到100MHz之间,单端时钟输入 内置5000 ppm SSC与否 通信方式 IIC 电源 1.2V core supply 2.5V or 3.3V IO supply 功耗:150Mw 封装:QFN-56 (7mm x 7mm) 3.2.4 应用产品:广告机,平板、医疗器械、车机、显示器、小电视、车载电视等 3.2.5 应用平台:RK、全志、M-star、炬力等 3.3.6 推广注意事项A:确认客户使用屏的分辨率,最常用的是1366x768@60Hz和1920x1080@60Hz BNCS8803支持4-lane DP / eDP输出通常支持WQXGA所需 (2560 * 1600)及以上60 hz的帧速率 C.确认客户的信号源,要是标准的HDMI信号,其他的都不行; D.此芯片支持缩放功能,分数缩放比例2:1至1:2; E、此芯片不是纯硬件转换芯片,需要通过IIC或者SPI进行初始化,初始化一般使用客户CPU进行,这样方便控制时序也节省成本,如果不使用客户CPU进行初始化就要另外加MCU进行配置。 设计注意事项: A、NCS8801S设计的时候要特别注意输入输出的走线问题,要做好屏蔽以免信号受到干扰。 B、注意电源滤波 C、设计的时候预留LVDS信号要预留阻抗匹配电阻 D、设计的时候复位脚最好由客户CPU的GPIO口进行控制,以便控制整个方案的时序,避免后面出现问题。
上传时间: 2022-07-08
上传用户:
JESD9B-2011 微电子封装及封盖检验标准 此标准为英文版本。
上传时间: 2022-07-25
上传用户:默默
心音信号是人体最重要的生理信号之一,包含心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量生理病理信息。心音信号分析与识别是了解心脏和血管状态的一种不可缺少的手段。本文针对目前该研究领域中存在的分析方法问题和分类识别技术难点展开了深入的研究,内容涉及心音构成的分析、心音信号特征向量的提取、正常心音信号(NM)和房颤(AF)、主动脉回流(AR)、主动脉狭窄(AS)、二尖瓣回流(MR)4种心脏杂音信号的分类识别。本文的工作内容包括以下5个方面: a)心音信号采集与预处理。本文采用自行研制的带有录音机功能的听诊器实现对心音信号的采集。通过对心音信号噪声分析,选用小波降噪作为心音信号的滤波方法。根据实验分析,选择Donoho阈值函数结合多级阈值的方法作为心音信号预处理方案。 b)心音信号时频分析方法。文中采用5种时频分析方法分别对心音信号进行了时频谱特性分析,结果表明:不同的时频分析方法与待分析心音信号的特性有密切关系,即需要在小的交叉项干扰与高的时频分辨率之间作综合的考虑。鉴于此,本文提出了一种自适应锥形核时频(ATF)分析方法,通过实验验证该分布能较好地反映心音信号的时频结构,其性能优于一般锥形核分布(CKD)以及Choi-Williams分布(CWD)、谱图(SPEC)等固定核时频分析方法,从而选择自应锥形核时频分析方法进行心音信号分析。 c)心音信号特征向量提取。根据对3M Littmann() Stethoscopes[31]数据库中标准心音信号的时频分析结果,提取8组特征数据,通过Fihser降维处理方法提取出了实现分类可视化,且最易于分类的心音信号的2维特征向量,作为心音信号分类的特征向量。 d)心音信号分类方法。根据心音信号特征向量组成的散点图,研究了支持向量机核函数、多分类支持向量机的选取方法,同时,基于分类的目的 性和可信性,本文提出以分类精度最大为判断准则的核函数参数与松弛变量的优化方法,建立了心音信号分类的支持向量机模型,选取标准数据库中NM、AF、AR、AS、MR每类心音信号的80组2维特征向量中每类60组数据作为支持向量机的学习样本,对余下的每类20组数据进行测试,得到每类的分类精度(Ar)均为100%,同时对临床上采集的与上述4种同类心脏杂音信号和正常心音信号中每类24个心动周期进行分类实测,分类精度分别为:NM、AF、MR的分类精度均为100%,而AR、AS均为95.83%,验证了该方法的分类有效性。 e)心音信号分析与识别的软件系统。本文以MATLAB语言的可视化功能实现了心音信号分析与识别的软件运行平台构建,可完成对心音信号的读取、预处理,绘制时-频、能量特性的三维图及两维等高线图;同时,利用MATLAB与EXCEL的动态链接,实现对心音信号分析数据的存储以及统计功能;最后,通过对心音信号2维特征向量的分析,实现心音信号的自动识别功能。 本文的研究特色主要体现在心音信号特征向量提取的方法以及多分类支持向量机模型的建立两方面。 综上所述,本文从理论与实践两方面对心音信号进行了深入的研究,主要是采用自适应锥形核时频分析方法提取心音信号特征向量,根据心音信号特征向量组成的散点图,建立心音信号分类的支持向量机模型,并对正常心音信号和4种心脏杂音信号进行了分类研究,取得了较为满意的分类结果,但由于用于分类的心脏杂音信号种类及数据量尚不足,因此,今后的工作重点是采集更多种类的心脏杂音信号,进一步提高心音信号分类精度,使本文研究成果能最终应用于临床心脏量化听诊。 关键词:心音信号,小波降噪,非平稳信号,心脏杂音,信号处理,时频分析,自适应,支持向量机
上传时间: 2013-04-24
上传用户:weixiao99