在过去的十几年间,FPGA取得了惊人的发展:集成度已达到1000万等效门、速度可达到400~500MHz。随着FPGA的集成度不断增大,在高密度FPGA中,芯片上时钟的分布质量就变得越来越重要。时钟延时和时钟相位偏移已成为影响系统性能的重要因素。现在,解决时钟延时问题主要使用时钟延时补偿电路。 为了消除FPGA芯片内的时钟延时,减小时钟偏差,本文设计了内置于FPGA芯片中的延迟锁相环,采用一种全数字的电路结构,将传统DLL中的用模拟方式实现的环路滤波器和压控延迟链改进为数字方式实现的时钟延迟测量电路,和延时补偿调整电路,配合特定的控制逻辑电路,完成时钟延时补偿。在输入时钟频率不变的情况下,只需一次调节过程即可完成输入输出时钟的同步,锁定时间较短,噪声不会积累,抗干扰性好。 在Smic0.18um工艺下,设计出的时钟延时补偿电路工作频率范围从25MHz到300MHz,最大抖动时间为35ps,锁定时间为13个输入时钟周期。另外,完成了时钟相移电路的设计,实现可编程相移,为用户提供与输入时钟同频的相位差为90度,180度,270度的相移时钟;时钟占空比调节电路的设计,实现可编程占空比,可以提供占空比为50/50的时钟信号;时钟分频电路的设计,实现频率分频,提供1.5,2,2.5,3,4,5,8,16分频时钟。
上传时间: 2013-07-06
上传用户:LouieWu
16位带有并行预置功能的右移移位寄存器,CLK1是时钟信号, LOAD是并行数据使能信号,QB是串行输出端口
上传时间: 2013-04-24
上传用户:diamondsGQ
目 录 第一章 概述 3 第一节 硬件开发过程简介 3 §1.1.1 硬件开发的基本过程 4 §1.1.2 硬件开发的规范化 4 第二节 硬件工程师职责与基本技能 4 §1.2.1 硬件工程师职责 4 §1.2.1 硬件工程师基本素质与技术 5 第二章 硬件开发规范化管理 5 第一节 硬件开发流程 5 §3.1.1 硬件开发流程文件介绍 5 §3.2.2 硬件开发流程详解 6 第二节 硬件开发文档规范 9 §2.2.1 硬件开发文档规范文件介绍 9 §2.2.2 硬件开发文档编制规范详解 10 第三节 与硬件开发相关的流程文件介绍 11 §3.3.1 项目立项流程: 11 §3.3.2 项目实施管理流程: 12 §3.3.3 软件开发流程: 12 §3.3.4 系统测试工作流程: 12 §3.3.5 中试接口流程 12 §3.3.6 内部验收流程 13 第三章 硬件EMC设计规范 13 第一节 CAD辅助设计 14 第二节 可编程器件的使用 19 §3.2.1 FPGA产品性能和技术参数 19 §3.2.2 FPGA的开发工具的使用: 22 §3.2.3 EPLD产品性能和技术参数 23 §3.2.4 MAX + PLUS II开发工具 26 §3.2.5 VHDL语音 33 第三节 常用的接口及总线设计 42 §3.3.1 接口标准: 42 §3.3.2 串口设计: 43 §3.3.3 并口设计及总线设计: 44 §3.3.4 RS-232接口总线 44 §3.3.5 RS-422和RS-423标准接口联接方法 45 §3.3.6 RS-485标准接口与联接方法 45 §3.3.7 20mA电流环路串行接口与联接方法 47 第四节 单板硬件设计指南 48 §3.4.1 电源滤波: 48 §3.4.2 带电插拔座: 48 §3.4.3 上下拉电阻: 49 §3.4.4 ID的标准电路 49 §3.4.5 高速时钟线设计 50 §3.4.6 接口驱动及支持芯片 51 §3.4.7 复位电路 51 §3.4.8 Watchdog电路 52 §3.4.9 单板调试端口设计及常用仪器 53 第五节 逻辑电平设计与转换 54 §3.5.1 TTL、ECL、PECL、CMOS标准 54 §3.5.2 TTL、ECL、MOS互连与电平转换 66 第六节 母板设计指南 67 §3.6.1 公司常用母板简介 67 §3.6.2 高速传线理论与设计 70 §3.6.3 总线阻抗匹配、总线驱动与端接 76 §3.6.4 布线策略与电磁干扰 79 第七节 单板软件开发 81 §3.7.1 常用CPU介绍 81 §3.7.2 开发环境 82 §3.7.3 单板软件调试 82 §3.7.4 编程规范 82 第八节 硬件整体设计 88 §3.8.1 接地设计 88 §3.8.2 电源设计 91 第九节 时钟、同步与时钟分配 95 §3.9.1 时钟信号的作用 95 §3.9.2 时钟原理、性能指标、测试 102 第十节 DSP技术 108 §3.10.1 DSP概述 108 §3.10.2 DSP的特点与应用 109 §3.10.3 TMS320 C54X DSP硬件结构 110 §3.10.4 TMS320C54X的软件编程 114 第四章 常用通信协议及标准 120 第一节 国际标准化组织 120 §4.1.1 ISO 120 §4.1.2 CCITT及ITU-T 121 §4.1.3 IEEE 121 §4.1.4 ETSI 121 §4.1.5 ANSI 122 §4.1.6 TIA/EIA 122 §4.1.7 Bellcore 122 第二节 硬件开发常用通信标准 122 §4.2.1 ISO开放系统互联模型 122 §4.2.2 CCITT G系列建议 123 §4.2.3 I系列标准 125 §4.2.4 V系列标准 125 §4.2.5 TIA/EIA 系列接口标准 128 §4.2.5 CCITT X系列建议 130 参考文献 132 第五章 物料选型与申购 132 第一节 物料选型的基本原则 132 第二节 IC的选型 134 第三节 阻容器件的选型 137 第四节 光器件的选用 141 第五节 物料申购流程 144 第六节 接触供应商须知 145 第七节 MRPII及BOM基础和使用 146
标签: 硬件工程师
上传时间: 2013-05-28
上传用户:pscsmon
嵌入式系统的结构 ØDSP的发展历史和特点 ØDSP系统的设计 ØC6000 DSP的CPU和存储器 ØDSP的中断使用 ØDSP的时钟 Ø信号线的布置
上传时间: 2013-06-12
上传用户:nanjixehun
基于Multisim 10 软件对数字钟电路进行设计和仿真。采用555定时器产生秒时钟信号,用时钟信号驱动计数电路进行计数,将计数结果进行译码,最终在LED数码管上以数字的形式显示时、分、秒时间。
上传时间: 2013-10-31
上传用户:qoovoop
如AD9548数据手册所述,AD9548的输入端最多可支持八个独立参考时钟信号。八路输入各有一个专用参考监控器,判断输入参考信号的周期是否满足用户要求。图1是参考监控器和必要支持元件的框图。参考监控器测量输入参考信号的周期,并声明信号是过慢还是过快,即表示参考信号有误。该信息保存在参考状态寄存器内(各参考监控器具有用户可读取的专用状态寄存器)。虽然参考监控器将既不快也不慢的参考时钟信号视为正确,但仍会通过AD9548参考验证逻辑进一步审查。由于八个参考监控器全部相同,图1仅显示其中之一。然而应注意,所有八个参考监控器共用相同的采样时钟和用户提供的系统时钟周期值(TSYS)。
上传时间: 2014-12-23
上传用户:23333
脉冲波形的产生和整形:介绍矩形脉冲波形的产生和整形电路。 在脉冲整形电路中。介绍了最常用的两类整形电路——施密特触发器和单稳态触发器电路。在本章的最后,讨论了广为应用的555定时器和用它构成施密特触发器、单稳态触发器和多谐振荡器的方法。 7.1单稳态触发器 单稳态触发器的工作特性具有如下的显著特点; 第一,它有稳态和暂稳态两个不同的工作状态; 第二,在外界触发脉冲作用下,能从稳态翻转到暂稳态,在暂稳态维持一段时间以后,再自动返问稳态; 第三,暂稳态维持时间的长短取决于电路本身的参数,与触发脉冲的宽度和幅度无关。 由于具备这些特点。单稳态触发器被广泛应用于脉冲整形、延时(产生滞后于触发脉冲的输出脉冲)以及定时(产生固定时间宽度的脉冲信号)等。 7.1.1脉冲波形的主要参数 获取矩形脉冲波形的途径不外乎有两种:一种是利用各种形式的多谐振荡器电路直接产生所需要的矩形脉冲,另一种则是通过各种整形电路把已有的周期性变化波形变换为符合要求的矩形脉冲。当然,在采用整形的方法获取矩形脉冲时,是以能够找到频率和幅度都符合要求的一种已有电压信号为前提的。 在同步时序电路中,作为时钟信号的矩形脉冲控制和协调着整个系统的工作。因此,时钟脉冲的特性直接关系到系统能否正常地工作。为了定量描述矩形脉冲的特性,通常给出图7-1 中所标注的几个主要参数。这些参数是: 脉冲周期 ——周期性重复的脉冲序列中,两个相邻脉冲之间的时间间隔。有时也使用频率 表示单位时间内脉冲重复的次数。
标签: 脉冲波形
上传时间: 2013-10-08
上传用户:gai928943
本内容汇总了近30个PCB布线知识面试题是PCB工程师必备的知识点总结,也是面试者需要的知识。如何处理实际布线中的一些理论冲突的问题,在高速设计中,如何解决信号的完整性问题?差分布线方式是如何实现的?对于只有一个输出端的时钟信号线,如何实现差分布线?等问题
上传时间: 2013-12-15
上传用户:asdfasdfd
第二部分:DRAM 内存模块的设计技术..............................................................143第一章 SDR 和DDR 内存的比较..........................................................................143第二章 内存模块的叠层设计.............................................................................145第三章 内存模块的时序要求.............................................................................1493.1 无缓冲(Unbuffered)内存模块的时序分析.......................................1493.2 带寄存器(Registered)的内存模块时序分析...................................154第四章 内存模块信号设计.................................................................................1594.1 时钟信号的设计.......................................................................................1594.2 CS 及CKE 信号的设计..............................................................................1624.3 地址和控制线的设计...............................................................................1634.4 数据信号线的设计...................................................................................1664.5 电源,参考电压Vref 及去耦电容.........................................................169第五章 内存模块的功耗计算.............................................................................172第六章 实际设计案例分析.................................................................................178 目前比较流行的内存模块主要是这三种:SDR,DDR,RAMBUS。其中,RAMBUS内存采用阻抗受控制的串行连接技术,在这里我们将不做进一步探讨,本文所总结的内存设计技术就是针对SDRAM 而言(包括SDR 和DDR)。现在我们来简单地比较一下SDR 和DDR,它们都被称为同步动态内存,其核心技术是一样的。只是DDR 在某些功能上进行了改进,所以DDR 有时也被称为SDRAM II。DDR 的全称是Double Data Rate,也就是双倍的数据传输率,但是其时钟频率没有增加,只是在时钟的上升和下降沿都可以用来进行数据的读写操作。对于SDR 来说,市面上常见的模块主要有PC100/PC133/PC166,而相应的DDR内存则为DDR200(PC1600)/DDR266(PC2100)/DDR333(PC2700)。
上传时间: 2014-01-13
上传用户:euroford
信号完整性问题是高速PCB 设计者必需面对的问题。阻抗匹配、合理端接、正确拓扑结构解决信号完整性问题的关键。传输线上信号的传输速度是有限的,信号线的布线长度产生的信号传输延时会对信号的时序关系产生影响,所以PCB 上的高速信号的长度以及延时要仔细计算和分析。运用信号完整性分析工具进行布线前后的仿真对于保证信号完整性和缩短设计周期是非常必要的。在PCB 板子已焊接加工完毕后才发现信号质量问题和时序问题,是经费和产品研制时间的浪费。1.1 板上高速信号分析我们设计的是基于PowerPC 的主板,主要由处理器MPC755、北桥MPC107、北桥PowerSpanII、VME 桥CA91C142B 等一些电路组成,上面的高速信号如图2-1 所示。板上高速信号主要包括:时钟信号、60X 总线信号、L2 Cache 接口信号、Memory 接口信号、PCI 总线0 信号、PCI 总线1 信号、VME 总线信号。这些信号的布线需要特别注意。由于高速信号较多,布线前后对信号进行了仿真分析,仿真工具采用Mentor 公司的Hyperlynx7.1 仿真软件,它可以进行布线前仿真和布线后仿真。
上传时间: 2013-11-04
上传用户:herog3