该文档为深度学习在轨迹数据挖掘中的应用研究综述概述资料,讲解的还不错,感兴趣的可以下载看看…………………………
上传时间: 2021-10-16
上传用户:XuVshu
该文档为基于神经网络的数据挖掘的研究讲解文档,是一份很不错的参考资料,具有较高参考价值,感兴趣的可以下载看看………………
上传时间: 2021-11-21
上传用户:
Python数据挖掘入门与实践,这是一本适合初学者学习Python语言的书籍,很不错的资料,希望对你有帮助
上传时间: 2022-02-01
上传用户:
该文档为基于神经网络的数据挖掘研究讲解文档,是一份很不错的参考资料,具有较高参考价值,感兴趣的可以下载看看………………
上传时间: 2022-03-09
上传用户:XuVshu
机器学习与数据挖掘方法和应用(经典)
上传时间: 2022-03-27
上传用户:
统计学习基础:数据挖掘、推理与预测介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础:数据挖掘、推理与预测》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。【内容推荐】《统计学习基础:数据挖掘、推理与预测》试图将学习领域中许多重要的新思想汇集在一起,并且在统计学的框架下解释它们。随着计算机和信息时代的到来,统计问题的规模和复杂性都有了急剧增加。数据存储、组织和检索领域的挑战导致一个新领域“数据挖掘”的产生。数据挖掘是一个多学科交叉领域,涉及数据库技术、机器学习、统计学、神经网络、模式识别、知识库、信息提取、高性能计算等诸多领域,并在工业、商务、财经、通信、医疗卫生、生物工程、科学等众多行业得到了广泛的应用。【作者简介】Trevor Hastie,Robert Tibshirani和Jerome Friedman都是斯坦福大学统计学教授,并在这个领域做出了杰出的贡献。Hastie和Tibshirani提出了广义和加法模型,并出版专著“Generalized Additive Models”。Hastie的主要研究领域为:非参数回归和分类、统计计算以及生物信息学、医学和工业的特殊数据挖掘问题。他提出主曲线和主曲面的概念,并用S-PLUS编写了大量统计建模软件。Tibshirani的主要研究领域为:应用统计学、生物统计学和机器学习。他提出了套索的概念,还是“An Introduction to the Bootstrap”一书的作者之一。Friedman是CART、MARS和投影寻踪等数据挖掘工具的发明人之一。他不仅是位统计学家,而且是物理学家和计算机科学家,先后在物理学、计算机科学和统计学的一流杂志上表发论文80余篇。
标签: 统计
上传时间: 2022-05-04
上传用户:
人工智能,AI相关技能学习必备课程全收录!文件较大,存在百度网盘,附件中提供了分享链接和提取码,打开即可转存或下载。
上传时间: 2022-07-24
上传用户:kingwide
网络提供了海量的共享资源,人们需要从网络上搜索出自己感兴趣的信息,由此产生了Web挖掘的问题。Web挖掘就是借用数据挖掘技术来实现的。Web挖掘主要是文本信息的挖掘,本文主要研究了实现文本挖掘的层次凝聚类算法,对于传统的算法存在的问题,提出了改进的算法,研究了相似度值对整个算法过程的影响,设计了一个动态改变相似度值的计算公式。
上传时间: 2014-01-05
上传用户:banlangen
频繁模式挖掘算法,可以用于数据挖掘中关联规则的频繁项集挖掘
上传时间: 2013-12-29
上传用户:xauthu
数据仓库技术和OLAP研究,数据仓库、数据挖掘和OLAP分析及其应用实例
上传时间: 2014-01-16
上传用户:lgnf