虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

数字接收

  • 用FPGA实现MPEG-2数字图像传输流语义分析和协议解析功能

    本文首先分析数字图像压缩技术的实际应用情况,相关的DVB技术标准和测试标准ETR290,进而提出了一个可适用于实际工作环境的语义分析模型框架;并在FPGA开发环境ISE中按照这个语义分析模型框架构造了一个具体的VHDL模型;同时利用工具软件Synplify和modelsim完成软件功能和时序仿真;然后设计相应的硬件测试平台来验证模块功能。针对数字图像技术实际应用环境的特点,本文提出了一种构建在嵌入式硬件平台上的分析模块,可实时分析MPEG-2传输流语法。通过连接TCP/IP网络可实现24小时/7天长时间工作。模块化的设计,使其可以安装于各种设备或实际应用环境中的各关键节点,通过网络传输到统一的服务器;同时该模块可设置成不同的硬件触发模式,使之成为故障传感器。因此,该模块适用于工程开通、快速故障监测、长时间监控等。通过与市场上专业测试设备性能进行比较,在测试精确性方面不占优势,但在达到一定数量级的测试精度后,其廉价、简易和无需维护的特点将呈现巨大的优势。

    标签: FPGA MPEG 数字图像 传输流

    上传时间: 2013-04-24

    上传用户:源弋弋

  • 直接数字频率合成研究及其FPGA实现

    本文首先介绍了直接数字频率合成技术(DDS)的基本原理、体系结构及工作过程,然后针对其关键部分进行了优化,即采用函数近似法对存储表结构(LUT)进行了优化,使存贮位数大大缩小,并提出了一种杂散抑制技术的运用,即相位抖动技术。在对直接数字频率合成(DDS)方法产生的信号进行理论分析的过程中,用matlab进行编程仿真作出了详细的频谱分析验证。本文详细的介绍了本次设计的具体实现过程和方法,将现场可编程逻辑器件(FPGA)和 DDS技术相结合,具体的体现了基于VHDL语言的灵活设计和修改方式是对传统频率合成实现方法的一次重要改进。文章最后给出了实现代码、仿真结果,经过验证,本设计能够达到其预期性能指标。

    标签: FPGA 数字频率合成

    上传时间: 2013-04-24

    上传用户:Pzj

  • OFDM系统帧检测及同步算法FPGA设计与实现

    正交频分复用(OFDM)技术是一种多载波数字调制技术,它具有频谱利用率高、抗多径能力强等特点,在宽带无线多媒体通信领域中受到了广泛的关注。 OFDM系统可分为连续工作模式和突发工作模式。在IEEE802.11a、HiperLANType2等无线局域网标准中采用了OFDM的突发工作模式,该模式下的接收机首先对符合某种特定格式的帧做出检测。本文介绍了一种基于最小错误概率准则的帧检测算法,提出了该算法的FPGA实现方案。 同步技术是OFDM最关键的技术之一,它包括载波频率同步和符号同步。载波频率同步是为了纠正接收端相对于发送端的载波频率偏移,以保证子载波间的正交性;符号同步确定OFDM符号有用数据信息的开始时刻,也就是确定FFT窗的开始时刻。本文首先介绍了一种基于自相关的载波频率同步算法,给出了它的FPGA实现方案,重点讲述了其中用到的Cordic算法及其实现;然后介绍了分别基于互相关和自相关的两种符号同步算法,给出了各自的FPGA实现方案,从实现的角度比较了两种算法的优缺点,并且在FPGA设计中体现了面积复用和流水线操作的设计思想。 文章最后介绍了系统调试的情况,总结出一种ChipScopePro与Matlab相结合的调试方法,该方法在FPGA调试方面具有一定的通用性。

    标签: OFDM FPGA

    上传时间: 2013-07-16

    上传用户:Killerboo

  • 一种红外遥控信号的发送与接收

    介绍了一种对红外信号发射器中的,键发射芯片进行键功能扩充的实现方法,分析了红外遥控发射器集成电路BA5104的功能特点,给出了一种红外接收软件解码的实现方法和具体程序.

    标签: 红外遥控 信号 发送 接收

    上传时间: 2013-08-03

    上传用户:隐界最新

  • 深入了解数字示波器死区时间及其影响

    混合信号示波器 (MSO) 已成为 当今嵌入设备设计师的首选工具。 安捷伦科技公司 (前惠普公司) 于 1996年推出了首款MSO,并于近日 推出了第三代MSO。所有主要示波 器厂商现在都可提供混合信号示波 器。MSO在基础示波器功能中增加 了16 个或更多逻辑分析仪采集信 道,及串行总线触发和协议解码功 能,研发工程师和技术人员可更快 调试其混合信号设计。MSO可弥补 传统数字存储示波器 (DSO) 和当今 更加复杂的逻辑分析仪及串行总线 协议分析仪之间的差距。那么MSO 与传统DSO 相比,有哪些改善? 不 同厂商的MSO 之间的差别是什么?

    标签: 数字示波器 死区时间

    上传时间: 2013-04-24

    上传用户:huql11633

  • 基于Matlab的数字语音处理

    有噪声的语音信号分析与处理设计设计内容: 1) 选择一个语音信号作为分析对象,或录制一段语音信号; 2) 对语音信号进行采样,画出采样后语音信号的时域波形和频谱图; 3) 利用MATLAB中的随机函数产生噪声加入到语音信号中,使语音信号被污染,然后进行频谱分析; 4) 设计FIR和IIR数字滤波器,并对被噪声污染的语音信号进行滤波,画出滤波前后信号的时域波形和频谱,并对滤波前后的信号进行比较,分析信号的变化; 5) 回放语音信号、给出相应处理程序及输出相应语音波形。

    标签: Matlab 数字 语音处理

    上传时间: 2013-06-01

    上传用户:wao1005

  • VERILOG HDL 数字系统设计

    夏宇闻教授的数字系统设计教程Verilog HDL

    标签: VERILOG HDL 数字系统设计

    上传时间: 2013-07-20

    上传用户:FFAN

  • VerilogHDL数字设计与综合夏宇闻译(第二版)

    Verilog HDL是一种硬件描述语言(HDL:Hardware Discription Language),是一种以文本形式来描述数字系统硬件的结构和行为的语言,用它可以表示逻辑电路图、逻辑表达式,还可以表示数字逻辑系统所完成的逻辑功能。 Verilog HDL和VHDL是目前世界上最流行的两种硬件描述语言,都是在20世纪80年代中期开发出来的。前者由Gateway Design Automation公司(该公司于1989年被Cadence公司收购)开发。该书本由浅入深的介绍了该技术的相关知识。推荐阅读。

    标签: VerilogHDL 数字设计

    上传时间: 2013-05-30

    上传用户:13081287919

  • OFDMMIMO系统接收机关键技术研究与FPGA实现

    近年来,移动通信技术在全球范围内得到了迅猛的发展及应用,各种全新的无线通信概念层出不穷、各种新的体制及其关键技术日新月异。由于正交频分复用(OFDM)技术可以高效地利用频谱资源并有效地对抗频率选择性衰落,多入多出(MIMO)利用多个天线实现多发多收,在不增加带宽和发送功率的情况下,可以成倍提高信道容量,因此OFDM-MIMO技术被广泛认为是后三代通信系统(B3G)的关键技术,是当今移动通信领域研究的热点。 本文对OFDM-MIMO通信系统接收机的关键技术--数字下变频,OFDM同步、解调进行了相关研究,在多天线接收板的XC2VP70-5FF1704芯片上,完成了数字下变频,OFDM同步和解调的FPGA设计与实现。通过功能仿真、时序仿真、板级电路测试,验证了该设计的正确性。 本文首先介绍了OFDM基本原理以其特点,然后对同步技术和数字下变频技术作了相应的介绍。同步是OFDM系统设计中的一项关键技术,即是针对系统中存在的时间偏差、频率偏差进行定时恢复、频偏的估计与补偿,来减少各种同步偏差对系统性能的影响。数字下变频是软件无线电的核心技术之一,其基本功能是从高速中频数字信号中提取所需的窄带信号,将其下变频为基带信号,降低数据率,以供后续DSP器件作进一步处理。 在数字下变频器的设计和实现方面,本文先介绍了数字下变频器的原理和基本结构,然后根据系统要求对其进行了设计,并在实现上作了一些简化,节约了硬件资源。 在对时间同步的设计和实现方面,本文采用了利用PN序列进行时间同步的算法。在实现上根据系统实际情况将数据分为四路分别与本地PN码做滑动相关运算,更有效的利用了同步数据,达到了更好的同步性能。 在OFDM的频率同步的设计和实现方面,本文采用重复的PN码两两相关来估计频偏值,并联合一个二阶负反馈环路进行补偿。该算法利用环路自身噪声带宽抑制噪声,提高频率估计精度,并同时利用负反馈扩大频偏估计范围。本文在对算法的详细研究分析的基础上对其进行了FPGA设计与实现。

    标签: OFDMMIMO FPGA 接收机

    上传时间: 2013-04-24

    上传用户:heminhao

  • 四关节实验室机器人控制器的研制

    在机器人学的研究领域中,如何有效地提高机器人控制系统的控制性能始终是研究学者十分关注的一个重要内容。在分析了工业机器人的发展历程和机器人控制系统的研究现状后,本论文的主要目标是针对四关节实验室机器人特有的机械结构和数学模型,建立一个新型全数字的基于DSP和FPGA的机器人位置伺服控制系统的软、硬件平台,实现对四关节实验室机器人的精确控制。 本论文从实际情况出发,首先分析了所研究的四关节实验室机器人的本体结构,并对其抽象简化得到了它的运动学数学模型。在明确了实现机器人精确位置伺服控制的控制原理后,我们对机器人控制系统的诸多可行性方案进行了充分论证,并最终决定采用了三级CPU控制的控制体系结构:第一级CPU为上位计算机,它实现对机器人的系统管理、协调控制以及完成机器人实时轨迹规划等控制算法的运算;第二级CPU为高性能的DSP处理器,它辅之以具有高速并行处理能力的FPGA芯片,实现了对机器人多个关节的高速并行驱动;第三级CPU为交流伺服驱动处理器,它实现了机器人关节伺服电机的精确三闭环误差驱动控制,以及电机的故障诊断和自动保护等功能。此外,我们采用比普通UART速度快得多的USB来实现上位计算机.与下位控制器之间的数据通信,这样既保证了两者之间连接方便,又有效的提高了控制系统的通信速度和可靠性。 机器人系统的软件设计包括两个部分:一是采用VC++实现的上位监控软件系统,它主要负责机器人实时轨迹规划等控制算法的运算,同时完成用户与机器人系统之间的信息交互;二是采用C语言实现的下位DSP控制程序,它主要负责接收上位监控系统或者下位控制箱发送的控制信号,实现对机器人的实时驱动,同时还能够实时的向上位监控系统或者下位控制箱反馈机器人的当前状态信息。 研究开发出来的四关节实验室机器人控制器具有控制实时性好、定位精度高、运行稳定可靠的特点,它允许用户通过上位控制计算机实现对机器人的各种设定作业的控制,也可以让用户通过机器人控制箱现场对机器人进行回零、示教等各项操作。

    标签: 实验室 机器人控制器

    上传时间: 2013-04-24

    上传用户:极客