本系统采用MSC-51系列单片机ATSC51和可编程并行I/O接口芯片8255A为中心器件来设计交通灯控制器,实现了能根据实际车流量通过8051芯片的P1口设置红、绿灯燃亮时间的功能;红绿灯循环点亮,倒计时剩5秒时黄灯闪烁警示(交通灯信号通过PA口输出,显示时间直接通过8255的PC口输出至双位数码管);车辆闯红灯报警;绿灯时间可检测车流量并可通过双位数码管显示。
上传时间: 2014-01-18
上传用户:sunjet
通信基础设施指南,如:无线信号链路,接口及计时器器件,电源管理,逻辑器件。
上传时间: 2014-01-18
上传用户:yzy6007
接口如下所示:clk:时钟输入端,此信号是串行扫描的同步信号; data_control[7..0]:8个分别控制数码管显示的输入信号; led_addr[7..0]:对8个数码管进行串行扫描的输出控制信号; seg7_data[6..0]驱动7段数码管各显示段的输出信号;
上传时间: 2014-01-07
上传用户:qq21508895
通过GPIB接口读取频谱仪的测试曲线,得到信号频谱
上传时间: 2016-06-07
上传用户:845251910@qq.com
单片机UART接口的详细说明[摘要]串行通信的基本特征是数据逐位顺序进行传送串行通信的格式及约定(如:同步方式、通讯速串行通信的格式及约定(如:同步方式、通讯速串行通信的格式及约定(如:同步方式、通讯速串行通信的格式及约定(如:同步方式、通讯速率、数据块格式、信号电平率、数据块格式、信号电平率、数据块格式、信号电平率、数据块格式、信号电平……等)不同,形成等)不同,形成等)不同,形成等)不同,形成了多种串行通信的协议与接口标准。
上传时间: 2021-10-28
上传用户:
IIC接口E2PROM(AT24C64) 读写VERILOG 驱动源码+仿真激励文件:module i2c_dri #( parameter SLAVE_ADDR = 7'b1010000 , //EEPROM从机地址 parameter CLK_FREQ = 26'd50_000_000, //模块输入的时钟频率 parameter I2C_FREQ = 18'd250_000 //IIC_SCL的时钟频率 ) ( input clk , input rst_n , //i2c interface input i2c_exec , //I2C触发执行信号 input bit_ctrl , //字地址位控制(16b/8b) input i2c_rh_wl , //I2C读写控制信号 input [15:0] i2c_addr , //I2C器件内地址 input [ 7:0] i2c_data_w , //I2C要写的数据 output reg [ 7:0] i2c_data_r , //I2C读出的数据 output reg i2c_done , //I2C一次操作完成 output reg i2c_ack , //I2C应答标志 0:应答 1:未应答 output reg scl , //I2C的SCL时钟信号 inout sda , //I2C的SDA信号 //user interface output reg dri_clk //驱动I2C操作的驱动时钟 );//localparam definelocalparam st_idle = 8'b0000_0001; //空闲状态localparam st_sladdr = 8'b0000_0010; //发送器件地址(slave address)localparam st_addr16 = 8'b0000_0100; //发送16位字地址localparam st_addr8 = 8'b0000_1000; //发送8位字地址localparam st_data_wr = 8'b0001_0000; //写数据(8 bit)localparam st_addr_rd = 8'b0010_0000; //发送器件地址读localparam st_data_rd = 8'b0100_0000; //读数据(8 bit)localparam st_stop = 8'b1000_0000; //结束I2C操作//reg definereg sda_dir ; //I2C数据(SDA)方向控制reg sda_out ; //SDA输出信号reg st_done ; //状态结束reg wr_flag ; //写标志reg [ 6:0] cnt ; //计数reg [ 7:0] cur_state ; //状态机当前状态reg [ 7:0] next_state; //状态机下一状态reg [15:0] addr_t ; //地址reg [ 7:0] data_r ; //读取的数据reg [ 7:0] data_wr_t ; //I2C需写的数据的临时寄存reg [ 9:0] clk_cnt ; //分频时
标签: iic 接口 e2prom at24c64 verilog 驱动 仿真
上传时间: 2021-11-05
上传用户:
【摘要】:随着USB接口在计算机业界应用越来越广泛,基于USB的接口开发显得越来越具有现实意义。随着客户对系统数据采集速度要求的不断提高,USB以其使用方便、易于扩展、速度快等优点而越来越多的被应用于各种人机接口设备中。本设计提出了一种USB接口的HID数据通讯接口设计方案,USB接口芯片采用的是PHILIP的PDIUSBD12,微控器是宏晶科技的STC89C52RC。该方案具有器件通用、成本低、方便焊接调试等特点。由于本设计采用了PDIUSBD12接口芯片,通过改变微控器的代码可以制作成各种标准的USB设备。本设计完成了一种典型的HID设备驱动程序的开发,PC机无需额外加装驱动便可实现和USB设备之间的通讯。而且经过典型HID设备的枚举过程,还可用于对USB协议的熟悉和学习。上位机软件部分,采用了VisualC++6.0编写HID设备的控制程序,此控制程序和HID下位机设备构成了完整的USB控制系统。在此基础上,本设计还增加了简单的音乐播放功能,可以打开并播放格式为mp3和wma的音频文件,还可以暂停、停止、选择播放曲目、调节音量等;在音频播放时HID设备彩灯可以实时显示音频的频谱。这在验证USB系统的同时,大大增加了控制的趣味性。验证结果表明按照该方案设计的数据通讯接口和HID设计运行稳定可靠。USB是一种计算机和外部设备进行通讯连接的接口.USB的出现的目的是取代现在计算机接口,简化计算机与外部设备的连接过程,使计算机的扩展更加方便。它使得计算机和外部设备的连接十分方便。目前,各种计算机外部设备都在逐渐改为USB接口,USB技术的出现是计算机接口技术的一大飞跃。越来越多的测控系统、信号处理系统和智能仪器选用USB接口与PC机进行高速、海量的数据通讯。但是,相对UART(通用异步串口)、LPT(打印机并行端口),USB的开发难度要大的多。采用HID(Human Interface Device,人机接口设备)的设计方案则可以很好的解决这一矛盾。
上传时间: 2022-05-02
上传用户:shjgzh
随着手机摄像头和数码相机性能的提升,增加摄像头设备到平台处理器之间的传输带宽变越来越有必要,传统的DVP接口已经不能适应现在的科技发展。在这样的大形势下MIPI联盟应运而生,它制定了一个通用的标准来规范高性能移动终端的接口,而它的子协议MIPI CSI-2则完美的解决了摄像头设备与平台处理器之间高速通信的难题,提供了一种标准化、强大、可靠、低功耗的传输方式。MPI CSI-2接口采用差分信号线,确保了高速数据在传输时不易受到外界的干扰,而其采用的ECC编码和CRC编码则从一定程度上减少了个别错误数据对于整体数据的影响,又由于自身处于MIPI大家族协议之中,它自身也很容易兼容应用MIPI家族协议的其他设备。本文详细的介绍了MIPI CSI-2协议数字部分RTL的实现,模拟部分的实现,以及后续的测试分析。在设计中RTL的设计、纠错以及模块的时序分析在Linux平台上进行。而模拟部分的实现以及整体的动态测试在FPGA平台上进行。通过这样的分工可以更全面的发挥两个平台的长处,更具体的来说,在Linux阶段的设计时充分的利用了modelsim与verdi配合的优势,从而更好的设计代码、分析代码和测试代码。而在综合时又利用Design Compile与Prime time充分的对设计做了资源分析和时序分析,保证了设计的质量。而在FPGA阶段设计时,充分的利用了FPGA灵活而且可以动态测试的优势来验证模块的正确性,此外在FPGA上还可以使用商用接收端来接收最后产生的MIPI数据,这样的验证方法更权威也更有说服力。在设计方法上,在数字部分的RTL设计中充分的应用了模块化的思想,不仅实现了协议的要求,而且灵活的适应了MIPI CSI-2协议在实际应用时的一些变通的需求。而在模拟部分的物理层设计中则大胆的做了尝试和创新,成功的在没有先例参照的情况下自主设计了FPGA下的物理层部分,并且最后成功的被商用接收端验证。总的来说在整个设计过程中遇到了阻碍和很多难题,但是经过不懈的努力最终克服了技术上的种种困难,最终也获得了阶段性的成果和自身的技术提高。
上传时间: 2022-05-30
上传用户:kingwide
摘要:随着客户要求手机摄像头像素越来越高,同时要求高的传输速度,传统的并口传输越来越受到挑战。提高并口传输的输出时钟是一个办法,但会导致系统的EMC设计变得越来困难;增加传输线手机摄像头MIPI技术介绍随着客户要求手机摄像头像素越来越高,同时要求高的传输速度,传统的并口传输越来越受到挑战。提高并口传输的输出时钟是一个办法,但会导致系统的EMC设计变得越来困难;增加传输线的位数是,但是这又不符合小型化的趋势。采用MIPI接口的模组,相较于并口具有速度快,传输数据量大,功耗低,抗干扰好的优点,越来越受到客户的青睐,并在迅速增长。例如一款同时具备MIPI和并口传输的8M的模组,8位并口传输时,需要至少11根的传输线,高达96M的输出时钟,才能达到12FPS的全像素输出;而采用MIPI接口仅需要2个通道6根传输线就可以达到在全像素下12FPS的帧率,且消耗电流会比并口传输低大概20MA。由于MIPI是采用差分信号传输的,所以在设计上需要按照差分设计的一般规则进行严格的设计,关键是需要实现差分阻抗的匹配,MIPI协议规定传输线差分阻抗值为80-125欧姆。上图是个典型的理想差分设计状态,为了保证差分阻抗,线宽和线距应该根据软件仿真进行仔细选择;为了发挥差分线的优势,差分线对内部应该紧密耦合,走线的形状需要对称,甚至过孔的位置都需要对称摆放;差分线需要等长,以免传输延迟造成误码:另外需要注意一点,为了实现紧密的耦合,差分对中间不要走地线,PIN的定义上也最好避免把接地焊盘放置在差分对之间(指的是物理上2个相邻的差分线)。
上传时间: 2022-06-02
上传用户:
在马达控制类应用中,正交编码器可以反馈马达的转子位置及转速信号.TM32F10x系列MCU集成了正交编码器接口,增量编码器可与MCU直接连接而无需外部接口电路。该应用笔记详细介绍了STM32F1Ox与正交编码器的接口,并附有相应的例程,使用户可以很快地掌握其使用方法.1正交编码器原理正交编码器实际上就是光电编码器,分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编码器结构简单,制作容易,一般在码盘上刻A.B.Z三道均匀分布的刻线,由于其给出的位置信息是增量式的,当应用于伺服领域时需要初始定位格雷码绝对式编码器一般都做成循环二进制代码,码道道数与二进制位数相同。格富码绝对式编码器可直接输出转子的绝对位置,不需要测定初始位置,但其工艺复杂、成本高,实现高分辨率、高精度较为困难。本文主要针对增量式正交编码器,它产生两个方波信号A和B,它们相差+-90.其符号由转动方向决定。如下图所示:图1:增量式正交编码器输出信号波形2 STM32F10x正交编码器接口详述STM32F10x的所有通用定时器及高级定时器都集成了正交编码器接口,定时器的两个输入TII和TI2直接与增量式正交编码器接口,当定时器设为正交编码器模式时,这两个信号的边沿作为计数器的时钟,而正交编码器的第三个输出(机械零位),可连接外部中断口来触发定时器的计数器复位.
上传时间: 2022-06-18
上传用户:zhanglei193