闩锁效应是指CMOS器件所固有的寄生双极晶体管被触发导通,在电源和地之间存在一个低阻通路,大电流,导致电路无法正常工作,甚至烧毁电路
上传时间: 2013-10-20
上传用户:缥缈
本文的目的在于,介绍如何计算具有狭窄气隙的圆形转子电机中的绕组感应。我们仅处理理想化的气隙磁场,不考虑槽、外部周边或倾斜电抗。但我们将考察绕组磁动势(MMF)的空间谐频。 在图1中,给出了12槽定子的轴截面示意图。实际上,所显示的是薄钢片的形状,或用于构成磁路的层片。铁芯由薄片构成,以控制涡流电流损耗。厚度将根据工作频率而变,在60Hz的电机中(大体积电机,工业用)层片的厚度典型为.014”(.355毫米)。它们堆叠在一起,以构成具有恰当长度的磁路。绕组位于该结构的槽内。 在图1中,给出了带有齿结构的梯形槽,在大部分长度方向上具有近乎均匀的截面,靠近气隙处较宽。齿端与相对狭窄的槽凹陷区域结合在一起,通过改善气隙场的均匀性、增加气隙磁导、将绕组保持在槽中,有助于控制很多电机转子中的寄生损耗。请注意,对于具有名为“形式缠绕”线圈的大型电机,它具有直边矩形槽,以及非均匀截面齿。下面的介绍针对两类电机。
上传时间: 2013-10-13
上传用户:我干你啊
放大电路静态工作点的稳定问题 温度对静态工作点的影响 射极偏置电路 1. 基极分压式射极偏置电路 2. 含有双电源的射极偏置电路 3. 含有恒流源的射极偏置电路
上传时间: 2014-01-04
上传用户:wentian_e
虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于 “短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故 通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性 称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。
上传时间: 2013-11-04
上传用户:181992417
摘要:对LDO线性稳压器关键技术进行了分析,重点分析了LDO稳压器的稳定性问题,在此基础上提出了一种新型的动态频率补偿电路,利用MOS管的开关电阻、寄生电容等构成的电阻电容网络,通过采样负载电流而改变MOS开关管的工作点或工作状态,即改变开关电阻、寄生电容的值,从而实现动态的频率补偿。与传统方法相比,该电路大大提高了系统的瞬态响应性能。 关键词:LDo;稳定性;ESR;动态频率补偿
上传时间: 2013-11-14
上传用户:gtf1207
摘要: 介绍了时钟分相技术并讨论了时钟分相技术在高速数字电路设计中的作用。 关键词: 时钟分相技术; 应用 中图分类号: TN 79 文献标识码:A 文章编号: 025820934 (2000) 0620437203 时钟是高速数字电路设计的关键技术之一, 系统时钟的性能好坏, 直接影响了整个电路的 性能。尤其现代电子系统对性能的越来越高的要求, 迫使我们集中更多的注意力在更高频率、 更高精度的时钟设计上面。但随着系统时钟频率的升高。我们的系统设计将面临一系列的问 题。 1) 时钟的快速电平切换将给电路带来的串扰(Crosstalk) 和其他的噪声。 2) 高速的时钟对电路板的设计提出了更高的要求: 我们应引入传输线(T ransm ission L ine) 模型, 并在信号的匹配上有更多的考虑。 3) 在系统时钟高于100MHz 的情况下, 应使用高速芯片来达到所需的速度, 如ECL 芯 片, 但这种芯片一般功耗很大, 再加上匹配电阻增加的功耗, 使整个系统所需要的电流增大, 发 热量增多, 对系统的稳定性和集成度有不利的影响。 4) 高频时钟相应的电磁辐射(EM I) 比较严重。 所以在高速数字系统设计中对高频时钟信号的处理应格外慎重, 尽量减少电路中高频信 号的成分, 这里介绍一种很好的解决方法, 即利用时钟分相技术, 以低频的时钟实现高频的处 理。 1 时钟分相技术 我们知道, 时钟信号的一个周期按相位来分, 可以分为360°。所谓时钟分相技术, 就是把 时钟周期的多个相位都加以利用, 以达到更高的时间分辨。在通常的设计中, 我们只用到时钟 的上升沿(0 相位) , 如果把时钟的下降沿(180°相位) 也加以利用, 系统的时间分辨能力就可以 提高一倍(如图1a 所示)。同理, 将时钟分为4 个相位(0°、90°、180°和270°) , 系统的时间分辨就 可以提高为原来的4 倍(如图1b 所示)。 以前也有人尝试过用专门的延迟线或逻辑门延时来达到时钟分相的目的。用这种方法产生的相位差不够准确, 而且引起的时间偏移(Skew ) 和抖动 (J itters) 比较大, 无法实现高精度的时间分辨。 近年来半导体技术的发展, 使高质量的分相功能在一 片芯片内实现成为可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能优异的时钟 芯片。这些芯片的出现, 大大促进了时钟分相技术在实际电 路中的应用。我们在这方面作了一些尝试性的工作: 要获得 良好的时间性能, 必须确保分相时钟的Skew 和J itters 都 比较小。因此在我们的设计中, 通常用一个低频、高精度的 晶体作为时钟源, 将这个低频时钟通过一个锁相环(PLL ) , 获得一个较高频率的、比较纯净的时钟, 对这个时钟进行分相, 就可获得高稳定、低抖动的分 相时钟。 这部分电路在实际运用中获得了很好的效果。下面以应用的实例加以说明。2 应用实例 2. 1 应用在接入网中 在通讯系统中, 由于要减少传输 上的硬件开销, 一般以串行模式传输 图3 时钟分为4 个相位 数据, 与其同步的时钟信号并不传输。 但本地接收到数据时, 为了准确地获取 数据, 必须得到数据时钟, 即要获取与数 据同步的时钟信号。在接入网中, 数据传 输的结构如图2 所示。 数据以68MBös 的速率传输, 即每 个bit 占有14. 7ns 的宽度, 在每个数据 帧的开头有一个用于同步检测的头部信息。我们要找到与它同步性好的时钟信号, 一般时间 分辨应该达到1ö4 的时钟周期。即14. 7ö 4≈ 3. 7ns, 这就是说, 系统时钟频率应在300MHz 以 上, 在这种频率下, 我们必须使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型门延迟为340p s) , 如前所述, 这样对整个系统设计带来很多的困扰。 我们在这里使用锁相环和时钟分相技术, 将一个16MHz 晶振作为时钟源, 经过锁相环 89429 升频得到68MHz 的时钟, 再经过分相芯片AMCCS4405 分成4 个相位, 如图3 所示。 我们只要从4 个相位的68MHz 时钟中选择出与数据同步性最好的一个。选择的依据是: 在每个数据帧的头部(HEAD) 都有一个8bit 的KWD (KeyWord) (如图1 所示) , 我们分别用 这4 个相位的时钟去锁存数据, 如果经某个时钟锁存后的数据在这个指定位置最先检测出这 个KWD, 就认为下一相位的时钟与数据的同步性最好(相关)。 根据这个判别原理, 我们设计了图4 所示的时钟分相选择电路。 在板上通过锁相环89429 和分相芯片S4405 获得我们所要的68MHz 4 相时钟: 用这4 个 时钟分别将输入数据进行移位, 将移位的数据与KWD 作比较, 若至少有7bit 符合, 则认为检 出了KWD。将4 路相关器的结果经过优先判选控制逻辑, 即可输出同步性最好的时钟。这里, 我们运用AMCC 公司生产的 S4405 芯片, 对68MHz 的时钟进行了4 分 相, 成功地实现了同步时钟的获取, 这部分 电路目前已实际地应用在某通讯系统的接 入网中。 2. 2 高速数据采集系统中的应用 高速、高精度的模拟- 数字变换 (ADC) 一直是高速数据采集系统的关键部 分。高速的ADC 价格昂贵, 而且系统设计 难度很高。以前就有人考虑使用多个低速 图5 分相技术应用于采集系统 ADC 和时钟分相, 用以替代高速的ADC, 但由 于时钟分相电路产生的相位不准确, 时钟的 J itters 和Skew 比较大(如前述) , 容易产生较 大的孔径晃动(Aperture J itters) , 无法达到很 好的时间分辨。 现在使用时钟分相芯片, 我们可以把分相 技术应用在高速数据采集系统中: 以4 分相后 图6 分相技术提高系统的数据采集率 的80MHz 采样时钟分别作为ADC 的 转换时钟, 对模拟信号进行采样, 如图5 所示。 在每一采集通道中, 输入信号经过 缓冲、调理, 送入ADC 进行模数转换, 采集到的数据写入存储器(M EM )。各个 采集通道采集的是同一信号, 不过采样 点依次相差90°相位。通过存储器中的数 据重组, 可以使系统时钟为80MHz 的采 集系统达到320MHz 数据采集率(如图6 所示)。 3 总结 灵活地运用时钟分相技术, 可以有效地用低频时钟实现相当于高频时钟的时间性能, 并 避免了高速数字电路设计中一些问题, 降低了系统设计的难度。
上传时间: 2013-12-17
上传用户:xg262122
2-1 何谓测量放大电路?对其基本要求是什么? 在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。对其基本要求是:①输入阻抗应与传感器输出阻抗相匹配;②一定的放大倍数和稳定的增益;③低噪声;④低的输入失调电压和输入失调电流以及低的漂移;⑤足够的带宽和转换速率(无畸变的放大瞬态信号);⑥高输入共模范围(如达几百伏)和高共模抑制比;⑦可调的闭环增益;⑧线性好、精度高;⑨成本低。 2-2 图2-2a所示斩波稳零放大电路中,为什么采用高、低频两个通道,即R3、C3组成的高频通道和调制、解调、交流放大器组成的低频通道? 采用高频通道是为了使斩波稳零放大电路能在较宽的频率范围内工作,而采用低频通道则能对微弱的直流或缓慢变化的信号进行低漂移和高精度的放大。 2-3 请参照图2-3,根据手册中LF347和CD4066的连接图(即引脚图),将集成运算放大器LF347和集成模拟开关CD4066接成自动调零放大电路。 LF347和CD4066接成的自动调零放大电路如图X2-1。
标签: 信号放大电路
上传时间: 2013-10-09
上传用户:ysjing
由于电磁兼容的迫切要求,电磁干扰(EMI)抑制元件获得了广泛的应用。然而实际应用中的电磁兼容问题十分复杂,单单依靠理论知识是完全不够的,它更依赖于广大电子工程师的实际经验。为了更好地解决电子产品的电磁兼容性这一问题,还要考虑接地、 电路与PCB板设计、电缆设计、屏蔽设计等问题[1][2]。本文通过介绍磁珠的基本原理和特性来说明它在开关电源电磁兼容设计中的重要性与应用,以期为设计者在设计新产品时提供必要的参考。 2 磁珠及其工作原理 磁珠的主要原料为铁氧体,铁氧体是一种立方晶格结构的亚铁磁性材料,铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商都提供专门用于电磁干扰抑制的铁氧体材料。这种材料的特点是高频损耗非常大,具有很高的导磁率,它可以使电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常应用于高频情况,因为在低频时它们主要呈现电感特性,使得损耗很小。在高频情况下,它们主要呈现电抗特性并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高 频衰减器使用的。实际上,铁氧体可以较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由它的电阻特性决定的。 对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率和饱和磁通密度。磁导率可以表示为复数,实数部分构成电感,虚数部分代表损耗,随着频率的增加而增加。因此它的等效电路为由电感L和电阻R组成的串联电路,如图1所示,电感L和电阻R都是频率的函数。当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。
标签:
上传时间: 2013-11-19
上传用户:yyyyyyyyyy
合理利用有效的控制策略提高有源滤波器的本身的补偿性能越来越成为各国学者研究重点。本文从有源滤波器的数学模型出发,详述有源滤波器的数学建模过程。并且针对谐波电流的检测需要较高的准确度和较好的实时性以及有源滤波器工作时的非线性与不确定性的特点,基于瞬时无功功率补偿法的谐波电流检测方法。有效的计算出电网中谐波电流、无功以及负序电流。并根据该算法的特点,将实时检测出的畸变电流通过控制算法,研制的有源滤波器可对不对称三相负载起到平衡作用。在MATLAB/simulink平台下搭建仿真模型,与传统的有源滤波器进行对比,仿真结果表明这种有源滤波器能够更加迅速、精确的补偿谐波电流。
上传时间: 2013-10-10
上传用户:风行天下
走线宽度电流关系对照表
上传时间: 2014-01-08
上传用户:solmonfu