单片机开发中除必要的硬件外,同样离不开软件,我们写的汇编语言源程序要变为CPU可以执行的机器码有两种方法,一种是手工汇编,另一种是机器汇编,目前已极少使用手工汇编的方法了。机器汇编是通过汇编软件将源程序变为机器码,用于MCS-51 单片机的汇编软件有早期的A51,随着单片机开发技术的不断发展,从普遍使用汇编语言到逐渐使用高级语言开发,单片机的开发软件也在不断发展,Keil 软件是目前最流行开发MCS-51 系列单片机的软件,这从近年来各仿真机厂商纷纷宣布全面支持Keil 即可看出。Keil 提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部份组合在一起。运行Keil 软件需要Pentium 或以上的CPU,16MB或更多RAM、20M 以上空闲的硬盘空间、WIN98、NT、WIN2000、WINXP等操作系统。掌握这一软件的使用对于使用51 系列单片机的爱好者来说是十分必要的,如果你使用C 语言编程,那么Keil 几乎就是你的不二之选(目前在国内你只能买到该软件、而你买的仿真机也很可能只支持该软件),即使不使用C 语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。我们将通过一些实例来学习Keil 软件的使用,在这一部份我们将学习如何输入源程序,建立工程、对工程进行详细的设置,以及如何将源程序变为目标代码。图1 所示电路图使用89C51 单片机作为主芯片,这种单片机性属于MCS-51 系列,其内部有4K 的FLASH ROM,可以反复擦写,非常适于做实验。89C51 的P1 引脚上接8 个发光二极管,P3.2~P3.4 引脚上接4 个按钮开关,我们的第一个任务是让接在P1 引脚上的发光二极管依次循环点亮。 一、Keil 工程的建立首先启动Keil 软件的集成开发环境,这里假设读者已正确安装了该软件,可以从桌面上直接双击uVision 的图标以启动该软件。UVison启动后,程序窗口的左边有一个工程管理窗口,该窗口有3 个标签,分别是Files、Regs、和Books,这三个标签页分别显示当前项目的文件结构、CPU 的寄存器及部份特殊功能寄存器的值(调试时才出现)和所选CPU 的附加说明文件,如果是第一次启动Keil,那么这三个标签页全是空的。
上传时间: 2013-12-26
上传用户:liulinshan2010
ST 公司的STM32TS60 是集成了I2C,SPI,UART 和USB 接口的数字电阻型多触摸屏控制器, 能同时跟踪多达10 个单独的触摸,分辨率达0.17mm,触摸屏扫描速率达125 Hz 到 250 Hz, 主要用于游戏机,智能手机,PMP,PND,MID 和笔记本电脑.本文介绍STM32TS60 主要特 性,2.5”-6”屏单器件应用电路。
上传时间: 2013-10-21
上传用户:dingdingcandy
TUSB3200 是一款最适合于音响和电脑周边设备的USB 接口用的音频数据控制芯片。它采用52 脚扁平封装,带有内置微处理器,价格低,可实现多声道播放和录音等功能,因而具有广泛的用途。 TUSB3200 内藏8052MCU 微处理器,并带有USB 接口,可实现通讯控制和数据处理等通用微处理器的功能。在芯片后端接上编码解码器(CODEC)即可完成多声道音频信号的播放和录入功能,并可完成USB 有源音箱、USB 头盔式音频设备和USB 话筒等数据的接入和处理等任务。
上传时间: 2013-11-17
上传用户:ifree2016
随着单片机开发技术的不断发展,目前已有越来越多的人从普遍使用汇编语言到逐渐使用高级语言开发,其中主要是以C语言为主,市场上几种常见的单片机均有其C语言开发环境。这里以最为流行的80C51单片机为例来学习单片机的C语言编程技术。大家都有C语言基础,但是编单片机程序,大家还得找专门的书来学习一下。这里我们只介绍Keil这种工具软件的用法。学习一种编程语言,最重要的是建立一个练习环境,边学边练才能学好。Keil软件是目最流行开发80C51系列单片机的软件,Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(µVision)将这些部份组合在一起。下面我以一个实验举一个例子,一步一步学习Keil软件的使用。 首先我们看硬件原理图: 很明显,要点亮使发光二极管,必须使单片机的I/O口P1.0输出低电平。于是我们的任务就是编程序使P1.0输出地电平。1. 使用Keil前必须先安装。安装过程简单,这里不在叙述。2. 安装好了Keil软件以后,我们打开它。打开以后界面如下:
上传时间: 2013-11-07
上传用户:wtrl
摘 要:单片机多机通讯一般采用串行总线方式,但在通讯距离短,通讯数据量大,通讯速率高的场合也会用到多机并行通讯。本文介绍一种采用简单逻辑电路实现单片机多机并行通讯的方法。关键词:并行通讯,三态缓冲寄存器,双端口存储器,总线隔离1、 简介本文介绍的单片机多机并行通讯系统,使用89C51作为主机,多片89C2051作为从机。(89C2051为20脚300MIL封装,带有2K FLASH E2PROM的单片机,除了少了两个并口外,具备MCS-51系列单片机所有功能。因为其体积小,功能强,必将在单片机应用领域内广泛使用)。这种并行通讯方法适用于在多站点,多层次的检测和控制系统中充当通信控制器的角色;也适合于用作单片机串行口扩充电路。
上传时间: 2013-10-31
上传用户:hxy200501
作为嵌入式系统主控单元——单片机,其软件往往是一个微观的实时操作系统,且大部分是为某种应用而专门设计的。系统程序有实时过程控制或实时信息处理的能力,要求能够及时响应随机发生的外部事件并对该事件做出快速处理。而分时操作系统却是把CPU的时间划分成长短基本相同的时间区间,即“时间片”,通过操作系统的管理,把这些时间片依次轮流地分配给各个用户使用。如果某个作业在时间片结束之前,整个任务还没有完成,那么该作业就被暂停下来,放弃CPU,等待下一轮循环再继续做。此时CPU又分配给另一个作业去使用。由于计算机的处理速度很快,只要时间片的间隔取得适当,那么一个用户作业从用完分配给它的一个时间片到获得下一个CPU时间片,中间有所“停顿”;但用户察觉不出来,好像整个系统全由它“独占”似的。分时操作系统主要具有以下3个特点:① 多路性。用户通过各自的终端,可以同时使用一个系统。② 及时性。用户提出的各种要求,能在较短或可容忍的时间内得到响应和处理。③ 独占性。在分时系统中,虽然允许多个用户同时使用一个CPU,但用户之间操作独立,互不干涉。分时操作系统主要是针对小型机以上的计算机提出的。一般而言,微处理器(MPU)驱动的通用计算机,系统设计人员对每一台的最终具体应用都是不得而知的,因此,在价格允许的情况下,硬件设计务求CPU时钟尽可能的快;计算及管理能力尽可能的强;程序和数据存储器的容量尽可能的大;各种计算机外设的配接尽可能的详尽等等,特别是采用分时操作系统的机器,因为是一机多用户的管理系统,它的要求就更高了。相对而言,微控制器(MCU)俗称单片机,是一个单片集成系统,它将这些或那些计算机所需的外设,诸如程序和数据存储器、端口以及有关的子系统集成到一片芯片上。从硬件上,单片机系统与采用分时操作系统的计算机系统是无法比拟的。但是,在单片机系统的设计中,设计人员对其最终具体应用是一清二楚的,它的使用环境相对是单一固定的。所控制的过程的可预见性为分时系统思想的实现提供了可能性。具体一点就是:虽然单片机的CPU速度较低,但其任务是可预见的,这样作业调度将变得简单而无须占用很多的CPU时间,同时“时间片”的设计是具体而有针对性的,因此可变得很有效。一、单片机分时系统的设计单片机系统往往是一个嵌入式的控制系统,因此目前绝大部分的单片机系统还是一实时系统。能够真正体现分时系统的设计思想的往往是那些多路重复检测控制系统。即便是在这些多路重复检测控制系统中,它的实时性也是非常重要的。也就是说,在单片机系统中应用了分时系统设计思想,但其及时性应首先进行考虑。
上传时间: 2013-12-23
上传用户:佳期如梦
AVR高速嵌入式单片机原理与应用(修订版)详细介绍ATMEL公司开发的AVR高速嵌入式单片机的结构;讲述AVR单片机的开发工具和集成开发环境(IDE),包括Studio调试工具、AVR单片机汇编器和单片机串行下载编程;学习指令系统时,每条指令均有实例,边学习边调试,使学习者看得见指令流向及操作结果,真正理解每条指令的功能及使用注意事项;介绍AVR系列多种单片机功能特点、实用程序设计及应用实例;作为提高篇,讲述简单易学、适用AVR单片机的高级语言BASCOMAVR及ICC AVR C编译器。 AVR高速嵌入式单片机原理与应用(修订版) 目录 第一章ATMEL单片机简介1.1ATMEL公司产品的特点11.2AT90系列单片机简介21.3AT91M系列单片机简介2第二章AVR单片机系统结构2.1AVR单片机总体结构42.2AVR单片机中央处理器CPU62.2.1结构概述72.2.2通用寄存器堆92.2.3X、Y、Z寄存器92.2.4ALU运算逻辑单元92.3AVR单片机存储器组织102.3.1可下载的Flash程序存储器102.3.2内部和外部的SRAM数据存储器102.3.3EEPROM数据存储器112.3.4存储器访问和指令执行时序112.3.5I/O存储器132.4AVR单片机系统复位162.4.1复位源172.4.2加电复位182.4.3外部复位192.4.4看门狗复位192.5AVR单片机中断系统202.5.1中断处理202.5.2外部中断232.5.3中断应答时间232.5.4MCU控制寄存器 MCUCR232.6AVR单片机的省电方式242.6.1休眠状态242.6.2空闲模式242.6.3掉电模式252.7AVR单片机定时器/计数器252.7.1定时器/计数器预定比例器252.7.28位定时器/计数器0252.7.316位定时器/计数器1272.7.4看门狗定时器332.8AVR单片机EEPROM读/写访问342.9AVR单片机串行接口352.9.1同步串行接口 SPI352.9.2通用串行接口 UART402.10AVR单片机模拟比较器452.10.1模拟比较器452.10.2模拟比较器控制和状态寄存器ACSR462.11AVR单片机I/O端口472.11.1端口A472.11.2端口 B482.11.3端口 C542.11.4端口 D552.12AVR单片机存储器编程612.12.1编程存储器锁定位612.12.2熔断位612.12.3芯片代码612.12.4编程 Flash和 EEPROM612.12.5并行编程622.12.6串行下载662.12.7可编程特性67第三章AVR单片机开发工具3.1AVR实时在线仿真器ICE200693.2JTAG ICE仿真器693.3AVR嵌入式单片机开发下载实验器SL?AVR703.4AVR集成开发环境(IDE)753.4.1AVR Assembler编译器753.4.2AVR Studio773.4.3AVR Prog783.5SL?AVR系列组态开发实验系统793.6SL?AVR*.ASM源文件说明81第四章AVR单片机指令系统4.1指令格式844.1.1汇编指令844.1.2汇编器伪指令844.1.3表达式874.2寻址方式894.3数据操作和指令类型924.3.1数据操作924.3.2指令类型924.3.3指令集名词924.4算术和逻辑指令934.4.1加法指令934.4.2减法指令974.4.3乘法指令1014.4.4取反码指令1014.4.5取补指令1024.4.6比较指令1034.4.7逻辑与指令1054.4.8逻辑或指令1074.4.9逻辑异或指令1104.5转移指令1114.5.1无条件转移指令1114.5.2条件转移指令1144.6数据传送指令1354.6.1直接数据传送指令1354.6.2间接数据传送指令1374.6.3从程序存储器直接取数据指令1444.6.4I/O口数据传送指令1454.6.5堆栈操作指令1464.7位指令和位测试指令1474.7.1带进位逻辑操作指令1474.7.2位变量传送指令1514.7.3位变量修改指令1524.7.4其它指令1614.8新增指令(新器件)1624.8.1EICALL-- 延长间接调用子程序1624.8.2EIJMP--扩展间接跳转1634.8.3ELPM--扩展装载程序存储器1644.8.4ESPM--扩展存储程序存储器1644.8.5FMUL--小数乘法1664.8.6FMULS--有符号数乘法1664.8.7FMULSU--有符号小数和无符号小数乘法1674.8.8MOVW--拷贝寄存器字1684.8.9MULS--有符号数乘法1694.8.10MULSU--有符号数与无符号数乘法1694.8.11SPM--存储程序存储器170 第五章AVR单片机AT90系列5.1AT90S12001725.1.1特点1725.1.2描述1735.1.3引脚配置1745.1.4结构纵览1755.2AT90S23131835.2.1特点1835.2.2描述1845.2.3引脚配置1855.3ATmega8/8L1855.3.1特点1865.3.2描述1875.3.3引脚配置1895.3.4开发实验工具1905.4AT90S2333/44331915.4.1特点1915.4.2描述1925.4.3引脚配置1945.5AT90S4414/85151955.5.1特点1955.5.2AT90S4414和AT90S8515的比较1965.5.3引脚配置1965.6AT90S4434/85351975.6.1特点1975.6.2描述1985.6.3AT90S4434和AT90S8535的比较1985.6.4引脚配置2005.6.5AVR RISC结构2015.6.6定时器/计数器2125.6.7看门狗定时器 2175.6.8EEPROM读/写2175.6.9串行外设接口SPI2175.6.10通用串行接口UART2175.6.11模拟比较器 2175.6.12模数转换器2185.6.13I/O端口2235.7ATmega83/1632285.7.1特点2285.7.2描述2295.7.3ATmega83与ATmega163的比较2315.7.4引脚配置2315.8ATtiny10/11/122325.8.1特点2325.8.2描述2335.8.3引脚配置2355.9ATtiny15/L2375.9.1特点2375.9.2描述2375.9.3引脚配置2395 .10ATmega128/128L2395.10.1特点2405.10.2描述2415.10.3引脚配置2435.10.4开发实验工具2455.11ATmega1612465.11.1特点2465.11.2描述2475.11.3引脚配置2475.12AVR单片机替代MCS51单片机249第六章实用程序设计6.1程序设计方法2506.1.1程序设计步骤2506.1.2程序设计技术2506.2应用程序举例2516.2.1内部寄存器和位定义文件2516.2.2访问内部 EEPROM2546.2.3数据块传送2546.2.4乘法和除法运算应用一2556.2.5乘法和除法运算应用二2556.2.616位运算2556.2.7BCD运算2556.2.8冒泡分类算法2556.2.9设置和使用模拟比较器2556.2.10半双工中断方式UART应用一2556.2.11半双工中断方式UART应用二2566.2.128位精度A/D转换器2566.2.13装载程序存储器2566.2.14安装和使用相同模拟比较器2566.2.15CRC程序存储的检查2566.2.164×4键区休眠触发方式2576.2.17多工法驱动LED和4×4键区扫描2576.2.18I2C总线2576.2.19I2C工作2586.2.20SPI软件2586.2.21验证SLAVR实验器及AT90S1200的口功能12596.2.22验证SLAVR实验器及AT90S1200的口功能22596.2.23验证SLAVR实验器及具有DIP40封装的口功能第七章AVR单片机的应用7.1通用延时子程序2607.2简单I/O口输出实验2667.2.1SLAVR721.ASM 2667.2.2SLAVR722.ASM2677.2.3SLAVR723.ASM2687.2.4SLAVR724.ASM2707.2.5SLAVR725.ASM2717.2.6SLAVR726.ASM2727.2.7SLAVR727.ASM2737.3综合程序2747.3.1LED/LCD/键盘扫描综合程序2747.3.2LED键盘扫描综合程序2757.3.3在LED上实现字符8的循环移位显示程序2757.3.4电脑放音机2777.3.5键盘扫描程序2857.3.6十进制计数显示2867.3.7廉价的A/D转换器2897.3.8高精度廉价的A/D转换器2947.3.9星星灯2977.3.10按钮猜数程序2987.3.11汉字的输入3047.4复杂实用程序3067.4.110位A/D转换3067.4.2步进电机控制程序3097.4.3测脉冲宽度3127.4.4LCD显示8字循环3187.4.5LED电脑时钟3247.4.6测频率3307.4.7测转速3327.4.8AT90S8535的A/D转换334第八章BASCOMAVR的应用8.1基于高级语言BASCOMAVR的单片机开发平台3408.2BASCOMAVR软件平台的安装与使用3418.3AVR I/O口的应用3458.3.1LED发光二极管的控制3458.3.2简易手控广告灯3468.3.3简易电脑音乐放音机3478.4LCD显示器3498.4.1标准LCD显示器的应用3498.4.2简单游戏机--按钮猜数3518.5串口通信UART3528.5.1AVR系统与PC的简易通信3538.5.2PC控制的简易广告灯3548.6单总线接口和温度计3568.7I2C总线接口和简易IC卡读写器359第九章ICC AVR C编译器的使用9.1ICC AVR的概述3659.1.1介绍ImageCraft的ICC AVR3659.1.2ICC AVR中的文件类型及其扩展名3659.1.3附注和扩充3669.2ImageCraft的ICC AVR编译器安装3679.2.1安装SETUP.EXE程序3679.2.2对安装完成的软件进行注册3679.3ICC AVR导游3689.3.1起步3689.3.2C程序的剖析3699.4ICC AVR的IDE环境3709.4.1编译一个单独的文件3709.4.2创建一个新的工程3709.4.3工程管理3719.4.4编辑窗口3719.4.5应用构筑向导3719.4.6状态窗口3719.4.7终端仿真3719.5C库函数与启动文件3729.5.1启动文件3729.5.2常用库函数3729.5.3字符类型库3739.5.4浮点运算库3749.5.5标准输入/输出库3759.5.6标准库和内存分配函数3769.5.7字符串函数3779.5.8变量参数函数3799.5.9堆栈检查函数3799.6AVR硬件访问的编程3809.6.1访问AVR的底层硬件3809.6.2位操作3809.6.3程序存储器和常量数据3819.6.4字符串3829.6.5堆栈3839.6.6在线汇编3839.6.7I/O寄存器3849.6.8绝对内存地址3849.6.9C任务3859.6.10中断操作3869.6.11访问UART3879.6.12访问EEPROM3879.6.13访问SPI3889.6.14相对转移/调用的地址范围3889.6.15C的运行结构3889.6.16汇编界面和调用规则3899.6.17函数返回非整型值3909.6.18程序和数据区的使用3909.6.19编程区域3919.6.20调试3919.7应用举例*3929.7.1读/写口3929.7.2延时函数3929.7.3读/写EEPROM3929.7.4AVR的PB口变速移位3939.7.5音符声程序3939.7.68字循环移位显示程序3949.7.7锯齿波程序3959.7.8正三角波程序3969.7.9梯形波程序396附录1AT89系列单片机简介398附录2AT94K系列现场可编程系统标准集成电路401附录3指令集综合404附录4AVR单片机选型表408参 考 文 献412
上传时间: 2013-11-08
上传用户:xcy122677
基于单片机的汽车多功能报警系统设计The Design of Automobile Multi-function AlarmingBased on Single Chip Computer刘法治赵明富宁睡达(河 南 科 技 学 院 ,新 乡 453 00 3)摘要介绍了一种基于单片机控制的汽车多功能报警系统,它能对汽车的润滑系统油压、制动系统气压、冷却系统温度、轮胎欠压及防盗进行自动检测,并在发现异常情况时,发出声光报警。阐述了该报警系统的硬件组成及软件设计方法。关键词单片机传感器数模转换报警Abstract Am ulti-fimctiona utomobilea larnungs ystemb asedo ns inglec hipc omputerco ntorlis in torducedin th isp aper.Th eo ilpr essuero flu bricatesystem, air pressure of braking system, temperature of cooling system, under pressure of tyre and guard against theft, detected automaticaly场thesystem. Audio and visual alarms wil be provided under abnormal conditions厂The hardware composition and software design of the system, described.Keywords Singlec hipc omputer Sensor Digital-t-oanaloguec onversion Alarmin 汽车多功能报苦器硬件系统设计根据 系 统 实际需要和产品性价比,选用ATMEL公司新生产的采用CMOs工艺的低功耗、高性能8位单片机AT89S52作为系统的控制器。AT89S52的片内有8k Bytes LSP Flash闪烁存储器,可进行100(〕次写、擦除操作;256Bytes内部数据存储器(RAM);3 2 根可编程输N输出线;2个可编程全双工串行通道;看门狗(WTD)电路等。系统由传感器、单片机、模数转换器、无线信号发射电路、指示灯驱动电路、声光报警驱动电KD一9563,发出三声二闪光。并触发一个高电平,驱动无线信号发射电路。
上传时间: 2013-11-09
上传用户:gxmm
如同今天的许多通用单片机(MCU)已经把USB、CAN和以太网作为标准外设集成在芯片内部一样,越来越多的无线网络芯片和无线网络解决方案也在向集成SoC 方向发展,比如第一代产品,Nordic公司nRF905,Chipcon公司cc1010 他们集成了8051兼容的单片机.这些无线单片机适合一般的点对点和点对多点的私有网络应用,如单一产品的遥控器和抄表装置等。无线通讯技术给智能装置的互连互通提供了便捷的途径,工业无线网络作为面向工业和家庭自动化的网络技术也正在向着智能,标准和节能方向发展。 目前在工业控制和消费电子领域使用的无线网络技术有ZigBee、无线局域网(Wi-Fi)、蓝牙(Blutooth)、GPRS通用分组无线业务、 ISM、IrDA等, 未来还能有3G、超宽频(UWB)、无线USB、Wimax等。 当然还有大量的私有和专用无线网络在工业控制和消费电子装置中使用,其中ZigBee、GPRS是在目前在国内工业控制中讨论和使用比较多的两种,蓝牙和无线局域网是在消费电子产品如手机、耳机、打印机、照相机和家庭中小企业网络中广泛使用的无线协议(个别工业产品也有应用,如无线视频监控和汽车音响系统),当然私有无线网络技术和产品在工业也有很多的应用。 ZigBee是一个低功耗、短距离和低速的无线网络技术,工作在2.4GHz国际免执照的频率,在IEEE标准上它和无线局域网、蓝牙同属802家族中的无线个人区域网络, ZigBee是有两部分组成,物理和链路层符合IEEE802.15.4, 网络和应用层符合ZigBee联盟的规范。ZigBee联盟是在2002年成立的非盈利组织,有包括TI、霍尼威尔、华为在内两百多家成员, ZigBee联盟致力推广兼容802.15.4和ZigBee协议的平台, 制定网络层和应用架构的公共规范,希望在楼宇自动化、居家控制、家用电器、工业自动控制和电脑外设等多方面普及ZigBee标准。 GPRS是在现有的GSM 网络发展出来的分组数据承载业务,它工作在标准的GSM频率,由于是一个分组交换系统,它适合工业上的突发,少量的数据传输,还因为GSM网络覆盖广泛,永远在线的特点,GPRS特点适合工业控制中的远程监控和测量系统。在工业控制应用中GPRS 芯片一般是以无线数传模块形式出现的,它通过RS232全双工接口和单片机连接,软件上这些模块都内置了GPRS,PPP和TCP/IP协议,单片机侧通过AT指令集向模块发出测试,连接和数据收发指令,GPRS模块通过中国移动cmnet进入互联网和其他终端或者服务器通讯。目前市场常见的模块有西门子G24TC45、TC35i,飞思卡尔G24,索爱GR47/48, 还有Wavecom 的集成了ARM9核的GPRS SoC模块WMP50/100。GPRS模块有区分自带TCP/IP协议和不带协议两种,一般来讲,如果是单片机侧有嵌入式操作系统和TCP/IP协议支持的话或者应用的要求只是收发短信和语音功能的话,可以选择不带协议的模块。 先进的SoC技术正在无线应用领域发挥重要的作用。德州仪器收购了Chipcon公司以后发布的CC2430 是市场上首款SoC的ZigBee单片机, 见图1,它把协议栈z-stack集成在芯片内部的闪存里面, 具有稳定可靠的CC2420收发器,增强性的8051内核,8KRAM,外设有I/O 口,ADC,SPI,UART 和AES128 安全协处理器,三个版本分别是32/64/128K的闪存,以128K为例,扣除基本z-stack协议还有3/4的空间留给应用代码,即使完整的ZigBee协议,还有近1/2的空间留给应用代码,这样的无线单片机除了处理通讯协议外,还可以完成一些监控和显示任务。这样无线单片机都支持通过SPI或者UART与通用单片机或者嵌入式CPU结合。 2008年4月发表CC2480新一代单片ZibBee认证处理器就展示出和TI MSP430 通用的低功耗单片机结合的例子。图1 CC2430应用电路 工业控制领域的另一个芯片巨头——飞思卡尔的单片ZigBee处理器MC1321X的方案也非常类似,集成了HC08单片机核心, 16/32/64K 闪存,外设有GPIO, I2C和ADC, 软件是Beestack 协议,只是最多4K RAM 对于更多的任务显得小了些。但是凭借32位单片机Coldfire和系统软件方面经验和优势, 飞思卡尔在满足用户应用的弹性需求方面作的更有特色,它率先能够提供从低-中-高各个层面的解决方案,见图2。
上传时间: 2013-11-02
上传用户:momofiona
单片机的C 语言轻松入门随着单片机开发技术的不断发展,目前已有越来越多的人从普遍使用汇编语言到逐渐使用高级语言开发,其中主要是以C 语言为主,市场上几种常见的单片机均有其C 语言开发环境。这里以最为流行的80C51 单片机为例来学习单片机的C 语言编程技术。本书共分六章,每章一个专题,以一些待完成的任务为中心,围绕该任务介绍C 语言的一些知识,每一个任务都是可以独立完成的,每完成一个任务,都能掌握一定的识,等到所有的任务都完成后,即可以完成C 语言的入门工作。C 语言概述及其开发环境的建立学习一种编程语言,最重要的是建立一个练习环境,边学边练才能学好。Keil 软件是目前最流行开发80C51 系列单片机的软件,Keil 提供了包括C 编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μVision)将这些部份组合在一起。在学会使用汇编语言后,学习C 语言编程是一件比较容易的事,我们将通过一系列的实例介绍C 语言编程的方法。图1-1 所示电路图使用89S52 单片机作为主芯片,这种单片机性属于80C51 系列,其内部有8K 的FLASH ROM,可以反复擦写,并有ISP 功能,支持在线下载,非常适于做实验。89S52 的P1 引脚上接8 个发光二极管,P3.2~P3.4 引脚上接4 个按钮开关,我们的任务是让接在P1 引脚上的发光二极管按要求发光。
上传时间: 2013-11-04
上传用户:467368609