📚 均值聚类技术资料

📦 资源总数:10875
💻 源代码:62718
均值聚类,作为数据挖掘与机器学习领域中一种广泛采用的无监督分类方法,以其简洁高效著称。通过迭代优化过程将数据集划分为预设数量的簇,特别适用于模式识别、图像处理及信号分析等场景。掌握此技术不仅能够帮助工程师们在海量信息中快速提炼关键特征,还能为后续更复杂的算法设计打下坚实基础。加入我们,从10875份精选资料中探索均值聚类的魅力吧!

🔥 均值聚类热门资料

查看全部10875个资源 »

模糊C-均值聚类算法是一种无监督图像分割技术,但存在着初始隶属度矩阵随机选取的影响,可能收敛到局部最优解的缺点。提出了一种粒子群优化与模糊C-均值聚类相结合的图像分割算法,根据粒子群优化算法强大的全局搜索能力,有效地避免了传统的FCM对随机初始值的敏感,容易陷入局部最优的缺点。实验表明,该算法加快了...

📅 👤 llandlu

K-均值聚类算法的编程实现。包括逐点聚类和批处理聚类。K-均值聚类的的时间复杂度是n*k*m,其中n为样本数,k为类别数,m为样本维数。这个时间复杂度是相当客观的。因为如果用每秒10亿次的计算机对50个样本采用穷举法分两类,寻找最优,列举一遍约66.7天,分成3类,则要约3500万年。针对算法局部最...

📅 👤 yuanyuan123

由于K-均值聚类算法局部最优的特点,而模拟退火算法理论上具有全局最优的特点。因此,用模拟退火算法对聚类进行了改进。20组聚类仿真表明,平均每次对K结果值改进8次左右,效果显著。下一步工作:实际上在高温区随机生成邻域是个组合爆炸问题(见本人上载软件‘k-均值聚类算法’所述),高温跳出局部解的概率几乎为...

📅 👤 hullow

💻 均值聚类源代码

查看更多 »
📂 均值聚类资料分类