随着科学技术的发展,指纹识别技术被广泛应用到各种不同的领域。对于一般的指纹识别系统,其设计要求具有很高的实时性和易用性,因此识别算法应该具有较低的复杂度,较快的运算速度,从而满足实时性的要求。所以有必要根据不同的识别算法采用不同的实现平台,使得指纹识别系统具有较高的可靠性、实时性、有效性等性能要求。 SOPC片上可编程系统和嵌入式系统是当前电子设计领域中最热门的概念。NiosⅡ是Altera.公司开发的一种采用流水线技术、单指令流的RISC嵌入式处理器软核,可以将它嵌入到FPGA内部,与用户自定义逻辑组建成一个基于FPGA的片上专用系统。 本文在综合考虑各种应用情况的基础上,以网络技术、数据库技术、指纹识别技术和嵌入式系统技术为理论基础,提出了一种有效可行的系统架构方案。对指纹识别技术中各个环节的算法和原理进行了深入研究,合理的改进了部分指纹识别算法;同时为了提高系统的实时性,采用NiosⅡ嵌入式处理器和FPGA硬件模块实现指纹图像处理主要算法。论文主要包括以下几个方面: 1、对指纹图像预处理、特征提取和特征匹配算法原理进行阐述,同时改进了指纹图像的细化算法,提高了算法的性能,并设计了一套实用的指纹特征数据结构; 2、针对指纹图像预处理模块,包括图像的归一化、频率提取、方向提取以及方向滤波,采用基于FPGA的硬件电路的方式实现。实验结果表明,在保证系统误识率较低、可靠性高的基础上,大大提高了系统的执行速度; 3、改变了传统的单枚指纹识别方法,提出采用多枚指纹唯一标识身份,大大降低了识别系统的误识率; 4、改进了传统的基于三角形匹配中获取基准点的方法,同时结合可变界限盒思想进行指纹特征匹配。 5、结合COM+技术、数据库技术和网络技术,开发了后台指纹特征匹配服务系统,实现了嵌入式指纹识别系统同数据库的实时信息交换。 实验结果表明,本文所提出的系统构架方案有效可行,基于FPGA的自动指纹识别系统在速度、功耗、扩展性等方面具有独特的优势,拥有广阔的发展前景。
上传时间: 2013-04-24
上传用户:15528028198
·【内容简介】本书内容主要包括两部分,第一部分介绍了各种数字滤波器和FFT等常用数字信号处理算法韵设计及其DSP实现;第二部分介绍了DSP的各个应用领域的系统设计方案,包括小波分析、变频矢量控制、神经网络、雷达信号处理、语音信号处理、生物医学信号处理、图像信号处理等方面,主要介绍了DSP在这些方面应用时的硬件、软件设计方案,并对某些典型系统的性能进行了仿真。 本书旨在使读者在已经掌握了DSP基础知识
上传时间: 2013-04-24
上传用户:lnnn30
:针对现场可编程门阵列(FPGA)芯片的特点,研究FPGA中双向端口I/O的设计,同时给出仿真初始化双向端口I/O的方法。采用这种双向端口的设计方法,选用Xilinx的Spartan2E芯片设计一个多通道图像信号处理系统。
上传时间: 2013-08-17
上传用户:xiaoyunyun
特点: 精确度0.1%满刻度 可作各式數學演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A|/ 16 BIT类比输出功能 输入与输出绝缘耐压2仟伏特/1分钟(input/output/power) 宽范围交直流兩用電源設計 尺寸小,穩定性高
上传时间: 2014-12-23
上传用户:ydd3625
特点(FEATURES) 精确度0.1%满刻度 (Accuracy 0.1%F.S.) 可作各式数学演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 类比输出功能(16 bit DAC isolating analog output function) 输入/输出1/输出2绝缘耐压2仟伏特/1分钟(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 宽范围交直流两用电源设计(Wide input range for auxiliary power) 尺寸小,稳定性高(Dimension small and High stability)
上传时间: 2013-11-24
上传用户:541657925
/*--------- 8051内核特殊功能寄存器 -------------*/ sfr ACC = 0xE0; //累加器 sfr B = 0xF0; //B 寄存器 sfr PSW = 0xD0; //程序状态字寄存器 sbit CY = PSW^7; //进位标志位 sbit AC = PSW^6; //辅助进位标志位 sbit F0 = PSW^5; //用户标志位0 sbit RS1 = PSW^4; //工作寄存器组选择控制位 sbit RS0 = PSW^3; //工作寄存器组选择控制位 sbit OV = PSW^2; //溢出标志位 sbit F1 = PSW^1; //用户标志位1 sbit P = PSW^0; //奇偶标志位 sfr SP = 0x81; //堆栈指针寄存器 sfr DPL = 0x82; //数据指针0低字节 sfr DPH = 0x83; //数据指针0高字节 /*------------ 系统管理特殊功能寄存器 -------------*/ sfr PCON = 0x87; //电源控制寄存器 sfr AUXR = 0x8E; //辅助寄存器 sfr AUXR1 = 0xA2; //辅助寄存器1 sfr WAKE_CLKO = 0x8F; //时钟输出和唤醒控制寄存器 sfr CLK_DIV = 0x97; //时钟分频控制寄存器 sfr BUS_SPEED = 0xA1; //总线速度控制寄存器 /*----------- 中断控制特殊功能寄存器 --------------*/ sfr IE = 0xA8; //中断允许寄存器 sbit EA = IE^7; //总中断允许位 sbit ELVD = IE^6; //低电压检测中断控制位 8051
上传时间: 2013-10-30
上传用户:yxgi5
TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。 TLC2543的特点 (1)12位分辩率A/D转换器; (2)在工作温度范围内10μs转换时间; (3)11个模拟输入通道; (4)3路内置自测试方式; (5)采样率为66kbps; (6)线性误差±1LSBmax; (7)有转换结束输出EOC; (8)具有单、双极性输出; (9)可编程的MSB或LSB前导; (10)可编程输出数据长度。 TLC2543的引脚排列及说明 TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1 TLC2543电路图和程序欣赏 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上传时间: 2013-11-19
上传用户:shen1230
#include<iom16v.h> #include<macros.h> #define uint unsigned int #define uchar unsigned char uint a,b,c,d=0; void delay(c) { for for(a=0;a<c;a++) for(b=0;b<12;b++); }; uchar tab[]={ 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,
上传时间: 2013-10-21
上传用户:13788529953
USB2.0 摄像头微处理器支持高速USB2.0 接口,内嵌强劲的图像后处理单元,JPEG 高速编译码器,支持高达200 万像素的CMOS 传感器接口和CCD 传感器接口,处理器设计的产品可以实现独特的运动监测功能与脸部追踪功能,这不仅大大加强了显示效果,提高了画面的品质,更拓展了PC 摄像头的应用领域,如增强的实时视频聊天功能和门禁监测系统。关键词:USB2.0,微控制器,硬件设计1.引言USB2.0 摄像头微处理器支持高速USB2.0 接口,内嵌强劲的图像后处理单元,JPEG 高速编译码器,支持高达200 万像素的CMOS 传感器接口和CCD 传感器接口,处理器设计的产品可以实现独特的运动监测功能与脸部追踪功能,这不仅大大加强了显示效果,提高了画面的品质,更拓展了PC 摄像头的应用领域,如增强的实时视频聊天功能和门禁监测系统。主要功能:USB2.0 高速传输并兼容USB1.1;高速图像后处理单元;JPEG 高速编译码器;VGA 下30 帧/秒高速传输;CMOS/CCD 接口;内置8 比特微控制器。不仪具备以上的先进特性,还拥有以下多种可扩展性:多个GPIO 接口为增加连拍、LED 指示灯、快捷键等功能提供了无限可能;USB2.0 兼容USB1.1,为摄像头的广泛的使用增加了保障;支持多种操作系统,如64-bit Window,Windows XP,Linux,Mac,VxWorks,WinCE等等。以下就是对USB2.0 摄像头微处理器的硬件设计方法及外围电路分布的介绍。2.系统硬件设计2.1 振荡器USB2.0 摄像头微处理器的钟频是12MHz,外部时钟频率稳定性必须小于±50ppm。图1 是振荡器电路的设计参考图。
上传时间: 2014-01-16
上传用户:dumplin9
利用FPGA 设计一个类似点阵LCD 显示的VGA 显示控制器,可实现文字及简单的图表显示。工作时只需将要显示内容转换成对应字模送入FPGA,即可实现相应内容的显示。关键词:FPGA;VGA;显示控制 随着数字图像处理的应用领域的不断扩大,其实时处理技术成为研究的热点。EDA(电子设计自动化)技术的迅猛发展为数字图像实时处理技术提供了硬件基础。其中FPGA 的特点适用于进行一些基于像素级的图像处理[1]。LCD 和CRT 显示器作为一种通用型显示设备,如今已经广泛应用于工作和生活中。与嵌入式系统中常用的显示器件相比,它具有显示面积大、色彩丰富、承载信息量大、接口简单等优点,如果将其应用到嵌入式系统中,可以显著提升产品的视觉效果。为此,尝试将VGA 显示的控制转化到FPGA 来完成实现。
上传时间: 2013-10-26
上传用户:lgd57115700