C8051Fxxx 系列单片机是完全集成的混合信号系统级芯片,具有与8051 兼容的微控制器内核,与MCS-51 指令集完全兼容。除了具有标准8052 的数字外设部件之外,片内还集成了数据采集和控制系统中常用的模拟部件和其它数字外设及功能部件。参见表1.1 的产品选择指南可快速查看每个MCU 的特性。 MCU 中的外设或功能部件包括模拟多路选择器、可编程增益放大器、ADC、DAC、电压比较器、电压基准、温度传感器、SMBus/ I2C、UART、SPI、可编程计数器/定时器阵列(PCA)、定时器、数字I/O 端口、电源监视器、看门狗定时器(WDT)和时钟振荡器等。所有器件都有内置的FLASH 程序存储器和256 字节的内部RAM,有些器件内部还有位于外部数据存储器空间的RAM,即XRAM。C8051Fxxx 单片机采用流水线结构,机器周期由标准的12 个系统时钟周期降为1 个系统时钟周期,处理能力大大提高,峰值性能可达25MIPS。C8051Fxxx 单片机是真正能独立工作的片上系统(SOC)。每个MCU 都能有效地管理模拟和数字外设,可以关闭单个或全部外设以节省功耗。FLASH 存储器还具有在系统重新编程能力,可用于非易失性数据存储,并允许现场更新8051 固件。应用程序可以使用MOVC 和MOVX 指令对FLASH 进行读或改写,每次读或写一个字节。这一特性允许将程序存储器用于非易失性数据存储以及在软件控制下更新程序代码。片内JTAG 调试支持功能允许使用安装在最终应用系统上的产品MCU 进行非侵入式(不占用片内资源)、全速、在系统调试。该调试系统支持观察和修改存储器和寄存器,支持断点、单步、运行和停机命令。在使用JTAG 调试时,所有的模拟和数字外设都可全功能运行。每个MCU 都可在工业温度范围(-45℃到+85℃)内用2.7V-3.6V(F018/019 为2.8V-3.6V)的电压工作。端口I/O、/RST 和JTAG 引脚都容许5V 的输入信号电压。
上传时间: 2013-11-14
上传用户:jiangshandz
AOC772S单芯片06年新款机数据:AOC772S(24C08)单芯片06年新款.bin
上传时间: 2013-12-17
上传用户:liangrb
自制89C51单片机实验电路板 学习单片机离不开实验,以往单片机的实验往往依赖于仿真机和单片机学习系统,价格昂贵,初学者很难配备。近年来,随着FLASH型单片机的广泛应用,采用软件模拟加写片验证成为一种经济实用的实验方法,以AT89C51单片机为例,其价格不足¥10RMB,而擦、写次数可以有1000次,一块芯片即可做上千次的实验。目前,流行的单片机开发软件Keil可以免费获得用于学习的EVAL版;编程器价格并不昂贵,专门用于写89C51类芯片的编程器价格更低廉(不足百元),而且编程器也是以后开发单片机所必备的工具;相比之下,用于实验的电路板制作比较麻烦,用万用板搭接,只能做些很简单的电路,稍复杂的电路一般要用到双面板,而业余条件下是很难自制双面板的,而且实验电路板主要是用于学习,学完了,也就没有什么使用价值了,所以很多人希望能够廉价地获得。作者在多年单片机教学(包括从事网络教学)的基础上,开发了一块有较多功能但使用单面板的单片机实验板,适于业余爱好者自制。这块实验板采用89C51为主芯片,板上安装了5位数码管,8个发光二极管,四个按钮开关,一个简单的音响电路,一个用于计数实验的振荡器,At24CXXX类芯片插座,X5045芯片插座,RS232串行接口等。使用这块实验板可以进行流水灯、人机界面程序设计、音响、中断、计数器等基本编程练习,还可以学习I2C接口芯片使用、SPI接口芯片使用、与PC机进行串行通讯等目前较为流行的技术。图1是该实验板的电路原理图,从图中可以看出,该实验板由若干块集成电路和一些阻容元件等组成,下面我们就分别介绍。1、发光二极管接口主芯片(U1)的P1端口接了8个发光二极管,这些发光二极管的负极接到P1端口各引脚,而正极则通过一个排电阻(标号为JP4,阻值为470殴)接到正电源端,这样,这些发光二极管亮的条件就U1的P1口相引的引脚为低电平,即如果P1口某引脚输出为0,相应的灯亮,如果输出为1,相应的灯灭。例:MOV P1,#0FH该行程序将使发光二极管L1-L4熄灭,而L5-L8点亮。2、数码管接口U1的P0口和P2口的部份引脚构成了5位LED数码管驱动电路,这里LED数码管采用了共阳型,共阳型数码管的笔段(即对应abcdefgh)引脚是二极管的负极,所有二极管的正极连在一起,构成公共端,即片选端,对于这种数码管的驱动,要求在片选端提供电流,为此,使用了PNP型三极管作为片选端的驱动,共使用5只三极管,所有三极管的发射极连在一起,接到正电源端,它们的基极则分别连到P2.0⋯P2.4,这样,当P2.0⋯P2.4中某引脚输出是高电平时,三极管不导通,不能给相应位的数码管供电,该位数码管的所有笔段都不亮,反之,如果某引脚是低电平时,三极管导通,可以给相应的数码管供电,该位数码管是否点亮,点亮哪些笔段,取决于这些笔段引脚是高或低电平。从图图1 共阳型数LED显示器.....
上传时间: 2013-11-14
上传用户:dingdingcandy
为了减少电力电子装置对电网引起的谐波污染,在变频器接入电网之前加入PFC电路是一种趋势。讨论了基于TMS320LF2407的全数字控制的单相PFC电路的工作原理,并由此得到了主电路参数的选取原则;建立了单相Boost型数字PFC的小信号动态模型,并分析了基于该模型的数字控制设计方法,给出了设计软件流程;最后搭建了一台样机,在实际电路中实现了数字控制的单相PFC,并得到了较好的实验结果。
上传时间: 2014-12-28
上传用户:zhangyi99104144
德州仪器 (TI) 处理器几乎能满足您所能想到的各种应用需求。我们阵营强大的处理器系列拥有各种价位、性能及功耗的产品可供选择,能满足几乎任何数字电子设计的要求。利用 TI 广博的系统专业知识、针对外设设计的全方位支持以及随时可方便获得的全套软件与配套模拟组件,您能够实现无穷无尽的设计方案。德州仪器 2008 年第二季度 数字信号处理选择指南TI 数字信号处理技术介绍1Ô数字媒体处理器OMAP应用处理器C6000数字信号处理器C5000数字信号处理器C2000数字信号处理器MSP430微控制器音频汽车通信工业医疗安全监控视频无线主要特性完整的定制型视频解决方案低功耗与高性能高性能低功耗与高性能结合高性能与高集成度可实现更环保的工业应用超低功耗达芬奇数字媒体处理器:针对数字视频而精心优化达芬奇 (DaVinci) 技术包括可扩展的可编程信号处理片上系统 (SoC)、加速器与外设,专为满足各种视频终端设备在性价比与特性方面的要求进行了优化。最新的 OMAP™ 应用处理器:最佳的通用多媒体与图形功能TI 高度可扩展的 OMAP 平台能够以任何单芯片组合实现业界通用多媒体与图形处理功能的最佳组合。最新推出的四款 OMAP35x 器件的目标应用非常广泛,其中包括便携式导航设备、因特网设备、便携式媒体播放器以及个人医疗设备等。最高性能:TMS320C6000™ DSP平台C6000™ DSP 平台可提供业界最高性能的定点与浮点 DSP,理想适用于视频、影像、宽带基础局端以及高性能音频等应用领域。低功耗与高性能相结合:TMS320C5000™ DSP 平台C5000™ DSP 平台不仅可提供业界最低的待机功耗,同时还支持高级自动化电源管理,能够充分满足诸如数字音乐播放器、VoIP、免提终端附件、GPS 接收机以及便携式医疗设备等个人及便携式产品的需求。结合类似 MCU 的控制功能与DSP 的高性能:TMS320C2000™数字信号控制器C2000™ 数字信号控制器 (DSC) 平台融合了控制外设的集成功能与微控制器 (MCU) 的易用性,以及 TI 先进DSP 技术的处理能力和 C 语言编程效率。C2000 DSC 理想适用于嵌入式工业应用,如数字马达控制、数字电源以及智能传感器等。MSP430 超低功耗微控制器平台TI MSP430 系列超低功耗 16 位 RISC 混合信号处理器可为电池供电的测量应用提供具有终极性能的解决方案。TI充分发挥自身在混合信号与数字技术领域卓越的领先优势, 推出的MSP430 使系统设计人员不仅能够同时实现与模拟信号、传感器与数字组件的接口相连,而且还能实现无与伦比的低功耗。轻松易用的软件与开发工具对于加速 DSP 产品开发而言,TMS320™ DSP 获得了 eXpressDSP™ 软件与开发工具的支持,其中包括Code Composer Studio™ IDE、DSP/BIOS™内核、TMS320 DSP 算法标准以及众多可重复使用的模块化软件等,均来自业界最大规模开发商网络。配套模拟产品TI 可提供各种配套的数据转换器、电源管理、放大器、接口与逻辑产品,能够充分满足您设计的整体需求。
上传时间: 2013-10-14
上传用户:jasson5678
Xilinx UltraScale™ 架构针对要求最严苛的应用,提供了前所未有的ASIC级的系统级集成和容量。 UltraScale架构是业界首次在All Programmable架构中应用最先进的ASIC架构优化。该架构能从20nm平面FET结构扩展至16nm鳍式FET晶体管技术甚至更高的技术,同 时还能从单芯片扩展到3D IC。借助Xilinx Vivado®设计套件的分析型协同优化,UltraScale架构可以提供海量数据的路由功能,同时还能智能地解决先进工艺节点上的头号系统性能瓶颈。 这种协同设计可以在不降低性能的前提下达到实现超过90%的利用率。 UltraScale架构的突破包括: • 几乎可以在晶片的任何位置战略性地布置类似于ASIC的系统时钟,从而将时钟歪斜降低达50% • 系统架构中有大量并行总线,无需再使用会造成时延的流水线,从而可提高系统速度和容量 • 甚至在要求资源利用率达到90%及以上的系统中,也能消除潜在的时序收敛问题和互连瓶颈 • 可凭借3D IC集成能力构建更大型器件,并在工艺技术方面领先当前行业标准整整一代 • 能在更低的系统功耗预算范围内显著提高系统性能,包括多Gb串行收发器、I/O以及存储器带宽 • 显著增强DSP与包处理性能 赛灵思UltraScale架构为超大容量解决方案设计人员开启了一个全新的领域。
标签: UltraScale Xilinx 架构
上传时间: 2013-11-17
上传用户:皇族传媒
赛灵思spartan6系列FPGA片内资源设计指导
上传时间: 2013-10-28
上传用户:hahayou
我采用XC4VSX35或XC4VLX25 FPGA来连接DDR2 SODIMM和元件。SODIMM内存条选用MT16HTS51264HY-667(4GB),分立器件选用8片MT47H512M8。设计目标:当客户使用内存条时,8片分立器件不焊接;当使用直接贴片分立内存颗粒时,SODIMM内存条不安装。请问专家:1、在设计中,先用Xilinx MIG工具生成DDR2的Core后,管脚约束文件是否还可更改?若能更改,则必须要满足什么条件下更改?生成的约束文件中,ADDR,data之间是否能调换? 2、对DDR2数据、地址和控制线路的匹配要注意些什么?通过两只100欧的电阻分别连接到1.8V和GND进行匹配 和 通过一只49.9欧的电阻连接到0.9V进行匹配,哪种匹配方式更好? 3、V4中,PCB LayOut时,DDR2线路阻抗单端为50欧,差分为100欧?Hyperlynx仿真时,那些参数必须要达到那些指标DDR2-667才能正常工作? 4、 若使用DDR2-667的SODIMM内存条,能否降速使用?比如降速到DDR2-400或更低频率使用? 5、板卡上有SODIMM的插座,又有8片内存颗粒,则物理上两部分是连在一起的,若实际使用时,只安装内存条或只安装8片内存颗粒,是否会造成信号完成性的影响?若有影响,如何控制? 6、SODIMM内存条(max:4GB)能否和8片分立器件(max:4GB)组合同时使用,构成一个(max:8GB)的DDR2单元?若能,则布线阻抗和FPGA的DCI如何控制?地址和控制线的TOP图应该怎样? 7、DDR2和FPGA(VREF pin)的参考电压0.9V的实际工作电流有多大?工作时候,DDR2芯片是否很烫,一般如何考虑散热? 8、由于多层板叠层的问题,可能顶层和中间层的铜箔不一样后,中间的夹层后度不一样时,也可能造成阻抗的不同。请教DDR2-667的SODIMM在8层板上的推进叠层?
上传时间: 2013-10-12
上传用户:han_zh
为了实现软硬件协同设计和提高仿真速度的需求,采用SystemC语言的建模方法,通过对片上网络体系结构的研究,提出了一种片上网络的建模方案,并对一个mesh结构完成了SystemC的建模设计。该模型可在系统级和寄存器传输级上使用同一个测试平台,且具有仿真速度快的特点,达到了设计要求。
上传时间: 2013-10-23
上传用户:ks201314
容迟/容延网络(Delay Tolerant Network/DTN)泛指由于节点移动、能量管理、调度等原因而出现频繁中断、甚至长时间处于中断状态的一类网络。针对DTN具有的时延高、割裂频繁、节点能量受限、以及节点移动性等特点,通过对DTN中基于复制策略的单播路由策略进行分类和比较,提出了如何优化DTN单播路由算法、提高网络传输率的建议。
上传时间: 2013-11-24
上传用户:xiaojie