虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

假设检验

  • YC-53型便携式电流互感器校验装置

    采用RISC结构型单片机Atmega128作为微处理器,320×240点阵大屏幕液晶显示器,全中文界面,读数直观,测量迅速,可在规程要求的测量点自动进行测量。模拟线路采用电位差式测量原理,具有较高的抗电磁干扰能力和较好的稳定性,结合微处理器技术及系统的引入,使该产品成为高智能化数字测量仪器。本产品执行标准及检定规格:《JJG169-93互感器校验仪检定规程》、《JJG313-94测量用电流互感器检定规程》、《GB1208-1997电流互感器》、《DL/T668-1999测量用互感器检验装置》、《DL/T448-2000电能计量装置技术管理规程》,测量对象为0.5级及以下精度电流互感器。

    标签: YC 53 便携式 电流互感器

    上传时间: 2013-11-11

    上传用户:ginani

  • keil c51 v9.01 (C51单片机开发工具Kei

    keil c51 v9.01此版不是汉化中文版,是英文版来的。ARM发布Keil μVision4集成开发环境(IDE),用来在微控制器和智能卡设备上创建、仿真和调试嵌入式应用。 μVision4 IDE是为增强开发人员的工作效率设计的,有了它可以更快速、更高效地开发和检验程序。通过μVision4 IDE中引入的灵活的窗口管理系统,开发人员可以使用多台监视器,在可视界面任何地方全面控制窗口放置。 新用户界面可以更好地利用屏幕空间,更有效地组织多个窗口,为开发应用提供整齐高效的环境。 μVision4在μVision3的成功经验的基础上增加了:* System Viewer (系统查看程序)窗口,提供了设备外围寄存器信息,这些信息可以在System Viewer窗口内部直接更改。* Debug Restore Views (调试恢复视图)允许保存多个窗口布局,为程序分析迅速选择最适合的调试视图。* Multi-Project Workspace(多项目工作空间)为处理多个并存的项目提供了简化的方法,如引导加载程序和应用程序。* 为基于ARM Cortex 处理器的MCU提供了Data and instruction trace(数据和指令追踪)功能。* 扩展了Device Simulation(设备仿真)功能以支持许多新设备,如Luminary、NXP和东芝生产的基于ARM Cortex-M3处理器的MCU;Atmel SAM7/9;及新的8051衍生品,如Infineon XC88x和SiLABS 8051Fxx。* 支持许多debug adapter interfaces(调试适配器接口),包括ADI miDAS Link、Atmel SAM-ICE、Infineon DAS和ST-Link。

    标签: keil 9.01 c51 C51

    上传时间: 2013-10-31

    上传用户:qingdou

  • Keil 软件实例教程 2

    Keil 软件实例教程 2 单片机开发中除必要的硬件外,同样离不开软件,我们写的汇编语言源程序要变为CPU可以执行的机器码有两种方法,一种是手工汇编,另一种是机器汇编,目前已极少使用手工汇编的方法了。机器汇编是通过汇编软件将源程序变为机器码,用于MCS-51 单片机的汇编软件有早期的A51,随着单片机开发技术的不断发展,从普遍使用汇编语言到逐渐使用高级语言开发,单片机的开发软件也在不断发展,Keil 软件是目前最流行开发MCS-51 系列单片机的软件,这从近年来各仿真机厂商纷纷宣布全面支持Keil 即可看出。Keil 提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部份组合在一起。运行Keil 软件需要Pentium 或以上的CPU,16MB或更多RAM、20M 以上空闲的硬盘空间、WIN98、NT、WIN2000、WINXP等操作系统。掌握这一软件的使用对于使用51 系列单片机的爱好者来说是十分必要的,如果你使用C 语言编程,那么Keil 几乎就是你的不二之选(目前在国内你只能买到该软件、而你买的仿真机也很可能只支持该软件),即使不使用C 语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。我们将通过一些实例来学习Keil 软件的使用,在这一部份我们将学习如何输入源程序,建立工程、对工程进行详细的设置,以及如何将源程序变为目标代码。图1 所示电路图使用89C51 单片机作为主芯片,这种单片机性属于MCS-51 系列,其内部有4K 的FLASH ROM,可以反复擦写,非常适于做实验。89C51 的P1 引脚上接8 个发光二极管,P3.2~P3.4 引脚上接4 个按钮开关,我们的第一个任务是让接在P1 引脚上的发光二极管依次循环点亮。 一、Keil 工程的建立首先启动Keil 软件的集成开发环境,这里假设读者已正确安装了该软件,可以从桌面上直接双击uVision 的图标以启动该软件。UVison启动后,程序窗口的左边有一个工程管理窗口,该窗口有3 个标签,分别是Files、Regs、和Books,这三个标签页分别显示当前项目的文件结构、CPU 的寄存器及部份特殊功能寄存器的值(调试时才出现)和所选CPU 的附加说明文件,如果是第一次启动Keil,那么这三个标签页全是空的。

    标签: Keil 软件 教程

    上传时间: 2013-10-26

    上传用户:ruan2570406

  • Keil 软件实例教程 1

    Keil 软件实例教程 1. 单片机开发中除必要的硬件外,同样离不开软件,我们写的汇编语言源程序要变为CPU可以执行的机器码有两种方法,一种是手工汇编,另一种是机器汇编,目前已极少使用手工汇编的方法了。机器汇编是通过汇编软件将源程序变为机器码,用于MCS-51 单片机的汇编软件有早期的A51,随着单片机开发技术的不断发展,从普遍使用汇编语言到逐渐使用高级语言开发,单片机的开发软件也在不断发展,Keil 软件是目前最流行开发MCS-51 系列单片机的软件,这从近年来各仿真机厂商纷纷宣布全面支持Keil 即可看出。Keil 提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部份组合在一起。运行Keil 软件需要Pentium 或以上的CPU,16MB或更多RAM、20M 以上空闲的硬盘空间、WIN98、NT、WIN2000、WINXP等操作系统。掌握这一软件的使用对于使用51 系列单片机的爱好者来说是十分必要的,如果你使用C 语言编程,那么Keil 几乎就是你的不二之选(目前在国内你只能买到该软件、而你买的仿真机也很可能只支持该软件),即使不使用C 语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。我们将通过一些实例来学习Keil 软件的使用,在这一部份我们将学习如何输入源程序,建立工程、对工程进行详细的设置,以及如何将源程序变为目标代码。图1 所示电路图使用89C51 单片机作为主芯片,这种单片机性属于MCS-51 系列,其内部有4K 的FLASH ROM,可以反复擦写,非常适于做实验。89C51 的P1 引脚上接8 个发光二极管,P3.2~P3.4 引脚上接4 个按钮开关,我们的第一个任务是让接在P1 引脚上的发光二极管依次循环点亮。 一、Keil 工程的建立首先启动Keil 软件的集成开发环境,这里假设读者已正确安装了该软件,可以从桌面上直接双击uVision 的图标以启动该软件。UVison启动后,程序窗口的左边有一个工程管理窗口,该窗口有3 个标签,分别是Files、Regs、和Books,这三个标签页分别显示当前项目的文件结构、CPU 的寄存器及部份特殊功能寄存器的值(调试时才出现)和所选CPU 的附加说明文件,如果是第一次启动Keil,那么这三个标签页全是空的。

    标签: Keil 软件 教程

    上传时间: 2013-11-25

    上传用户:hanbeidang

  • 自动检测80C51串行通讯中的波特率

    自动检测80C51串行通讯中的波特率:本文介绍一种在80C51 串行通讯应用中自动检测波特率的方法。按照经验,程序起动后所接收到的第1 个字符用于测量波特率。这种方法可以不用设定难于记忆的开关,还可以免去在有关应用中使用多种不同波特率的烦恼。人们可以设想:一种可靠地实现自动波特检测的方法是可能的,它无须严格限制可被确认的字符。问题是:在各种的条件下,如何可以在大量允许出现的字符中找出波特率定时间隔。显然,最快捷的方法是检测一个单独位时间(single bit time),以确定接收波特率应该是多少。可是,在RS-232 模式下,许多ASCII 字符并不能测量出一个单独位时间。对于大多数字符来说,只要波特率存在合理波动(这里的波特率是指标准波特率),从起始位到最后一位“可见”位的数据传输周期就会在一定范围内发生变化。此外,许多系统采用8 位数据、无奇偶校验的格式传输ASCII 字符。在这种格式里,普通ASCII 字节不会有MSB 设定,并且,UART总是先发送数据低位(LSB),后发送数据高位(MSB),我们总会看见数据的停止位。在下面的波特率检测程序中,先等待串行通讯输入管脚的起始信号(下降沿),然后起动定时器T0。在其后的串行数据的每一个上升沿,将定时器T0 的数值捕获并保存。当定时器T0溢出时,其最后一次捕获的数值即为从串行数据起始位到最后一个上升沿(我们假设是停止位)过程所持续的时间。

    标签: 80C51 自动检测 串行通讯 波特率

    上传时间: 2014-08-22

    上传用户:dajin

  • 同地弹现象的分析和讲解

    地弹的形成:芯片内部的地和芯片外的PCB地平面之间不可避免的会有一个小电感。这个小电感正是地弹产生的根源,同时,地弹又是与芯片的负载情况密切相关的。下面结合图介绍一下地弹现象的形成。 简单的构造如上图的一个小“场景”,芯片A为输出芯片,芯片B为接收芯片,输出端和输入端很近。输出芯片内部的CMOS等输入单元简单的等效为一个单刀双掷开关,RH和RL分别为高电平输出阻抗和低电平输出阻抗,均设为20欧。GNDA为芯片A内部的地。GNDPCB为芯片外PCB地平面。由于芯片内部的地要通过芯片内的引线和管脚才能接到GNDPCB,所以就会引入一个小电感LG,假设这个值为1nH。CR为接收端管脚电容,这个值取6pF。这个信号的频率取200MHz。虽然这个LG和CR都是很小的值,不过,通过后面的计算我们可以看到它们对信号的影响。先假设A芯片只有一个输出脚,现在Q输出高电平,接收端的CR上积累电荷。当Q输出变为低电平的时候。CR、RL、LG形成一个放电回路。自谐振周期约为490ps,频率为2GHz,Q值约为0.0065。使用EWB建一个仿真电路。(很老的一个软件,很多人已经不懈于使用了。不过我个人比较依赖它,关键是建模,模型参数建立正确的话仿真结果还是很可靠的,这个小软件帮我发现和解决过很多实际模拟电路中遇到的问题。这个软件比较小,有比较长的历史,也比较成熟,很容易上手。建议电子初入门的同学还是熟悉一下。)因为只关注下降沿,所以简单的构建下面一个电路。起初输出高电平,10纳秒后输出低电平。为方便起见,高电平输出设为3.3V,低电平是0V。(实际200M以上芯片IO电压会比较低,多采用1.5-2.5V。)

    标签:

    上传时间: 2013-10-17

    上传用户:zhishenglu

  • MCS51系列单片机软件控制复位的可靠方法

    MCS51系列单片机软件控制复位的可靠方法:文章指出了一种广泛流传的误解:在MCS-51系列单片机中,只要用指令使程序从起始地址开始执行,就可以复位单片机,摆脱干扰。通过实验,揭示了软件控制复位的可靠方法。有的单片机(如8098)有专门的复位指令,某些增强型MCS-51系统单片机虽然没有复位指令,但片内集成了WATCHDOG电路,故抗干扰也不成问题。而普及型MCS-51系列单片机(如8031和8032)既然无复位指令,又不带硬件WATCHDOS,如果没有外接硬件WATCHDOG电路,就必须采用软件抗干扰技术。常用的软件抗干扰技术有:软件陷阱、指令冗余、软件WATCHDOG等,它们的作用是在系统受干扰时能及时发现,再用软件的方法使系统复位。所谓软件复位就是用一系列指令来模仿复位操作,这就是MCS-51系列单片机所特有的软件复位技术。现用一简单的实验说明。接于P1.0的发光二极管LED0用来表示主程序的工作情况,接于P1.1的发光二极管LED1用于表示低级中断子程序的工作情况,接于P1.2的发光二极管LED2用来表示高级中断子程序的工作情况,接于P3.2口的按钮用来设立干扰标志,程序检测到干扰标志后故意进入死循环或掉进陷井,模仿受干扰的情况,从而检验各种复位方法的实际效果。实验初始化程序如下:

    标签: MCS 51 单片机 软件控制

    上传时间: 2013-11-03

    上传用户:sevenbestfei

  • 基于CPLD的单片机PCI接口设计

    详细阐述一种利用CPLD 实现的8 位单片机与PCI 设备间的通信接口方案,给出用ABEL HDL编写的主要源程序。该方案在实践中检验通过。

    标签: CPLD PCI 单片机 接口设计

    上传时间: 2013-10-30

    上传用户:yeling1919

  • keil入门实例教程

    单片机开发中除必要的硬件外,同样离不开软件,我们写的汇编语言源程序要变为CPU可以执行的机器码有两种方法,一种是手工汇编,另一种是机器汇编,目前已极少使用手工汇编的方法了。机器汇编是通过汇编软件将源程序变为机器码,用于MCS-51 单片机的汇编软件有早期的A51,随着单片机开发技术的不断发展,从普遍使用汇编语言到逐渐使用高级语言开发,单片机的开发软件也在不断发展,Keil 软件是目前最流行开发MCS-51 系列单片机的软件,这从近年来各仿真机厂商纷纷宣布全面支持Keil 即可看出。Keil 提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部份组合在一起。运行Keil 软件需要Pentium 或以上的CPU,16MB或更多RAM、20M 以上空闲的硬盘空间、WIN98、NT、WIN2000、WINXP等操作系统。掌握这一软件的使用对于使用51 系列单片机的爱好者来说是十分必要的,如果你使用C 语言编程,那么Keil 几乎就是你的不二之选(目前在国内你只能买到该软件、而你买的仿真机也很可能只支持该软件),即使不使用C 语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。我们将通过一些实例来学习Keil 软件的使用,在这一部份我们将学习如何输入源程序,建立工程、对工程进行详细的设置,以及如何将源程序变为目标代码。图1 所示电路图使用89C51 单片机作为主芯片,这种单片机性属于MCS-51 系列,其内部有4K 的FLASH ROM,可以反复擦写,非常适于做实验。89C51 的P1 引脚上接8 个发光二极管,P3.2~P3.4 引脚上接4 个按钮开关,我们的第一个任务是让接在P1 引脚上的发光二极管依次循环点亮。 一、Keil 工程的建立首先启动Keil 软件的集成开发环境,这里假设读者已正确安装了该软件,可以从桌面上直接双击uVision 的图标以启动该软件。UVison启动后,程序窗口的左边有一个工程管理窗口,该窗口有3 个标签,分别是Files、Regs、和Books,这三个标签页分别显示当前项目的文件结构、CPU 的寄存器及部份特殊功能寄存器的值(调试时才出现)和所选CPU 的附加说明文件,如果是第一次启动Keil,那么这三个标签页全是空的。

    标签: keil 教程

    上传时间: 2013-12-26

    上传用户:liulinshan2010

  • 汇编+保护模式+教程

    九.输入/输出保护为了支持多任务,80386不仅要有效地实现任务隔离,而且还要有效地控制各任务的输入/输出,避免输入/输出冲突。本文将介绍输入输出保护。 这里下载本文源代码。 <一>输入/输出保护80386采用I/O特权级IPOL和I/O许可位图的方法来控制输入/输出,实现输入/输出保护。 1.I/O敏感指令输入输出特权级(I/O Privilege Level)规定了可以执行所有与I/O相关的指令和访问I/O空间中所有地址的最外层特权级。IOPL的值在如下图所示的标志寄存器中。 标  志寄存器 BIT31—BIT18 BIT17 BIT16 BIT15 BIT14 BIT13—BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 00000000000000 VM RF 0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF I/O许可位图规定了I/O空间中的哪些地址可以由在任何特权级执行的程序所访问。I/O许可位图在任务状态段TSS中。 I/O敏感指令 指令 功能 保护方式下的执行条件 CLI 清除EFLAGS中的IF位 CPL<=IOPL STI 设置EFLAGS中的IF位 CPL<=IOPL IN 从I/O地址读出数据 CPL<=IOPL或I/O位图许可 INS 从I/O地址读出字符串 CPL<=IOPL或I/O位图许可 OUT 向I/O地址写数据 CPL<=IOPL或I/O位图许可 OUTS 向I/O地址写字符串 CPL<=IOPL或I/O位图许可 上表所列指令称为I/O敏感指令,由于这些指令与I/O有关,并且只有在满足所列条件时才可以执行,所以把它们称为I/O敏感指令。从表中可见,当前特权级不在I/O特权级外层时,可以正常执行所列的全部I/O敏感指令;当特权级在I/O特权级外层时,执行CLI和STI指令将引起通用保护异常,而其它四条指令是否能够被执行要根据访问的I/O地址及I/O许可位图情况而定(在下面论述),如果条件不满足而执行,那么将引起出错码为0的通用保护异常。 由于每个任务使用各自的EFLAGS值和拥有自己的TSS,所以每个任务可以有不同的IOPL,并且可以定义不同的I/O许可位图。注意,这些I/O敏感指令在实模式下总是可执行的。 2.I/O许可位图如果只用IOPL限制I/O指令的执行是很不方便的,不能满足实际要求需要。因为这样做会使得在特权级3执行的应用程序要么可访问所有I/O地址,要么不可访问所有I/O地址。实际需要与此刚好相反,只允许任务甲的应用程序访问部分I/O地址,只允许任务乙的应用程序访问另一部分I/O地址,以避免任务甲和任务乙在访问I/O地址时发生冲突,从而避免任务甲和任务乙使用使用独享设备时发生冲突。 因此,在IOPL的基础上又采用了I/O许可位图。I/O许可位图由二进制位串组成。位串中的每一位依次对应一个I/O地址,位串的第0位对应I/O地址0,位串的第n位对应I/O地址n。如果位串中的第位为0,那么对应的I/O地址m可以由在任何特权级执行的程序访问;否则对应的I/O地址m只能由在IOPL特权级或更内层特权级执行的程序访问。如果在I/O外层特权级执行的程序访问位串中位值为1的位所对应的I/O地址,那么将引起通用保护异常。 I/O地址空间按字节进行编址。一条I/O指令最多可涉及四个I/O地址。在需要根据I/O位图决定是否可访问I/O地址的情况下,当一条I/O指令涉及多个I/O地址时,只有这多个I/O地址所对应的I/O许可位图中的位都为0时,该I/O指令才能被正常执行,如果对应位中任一位为1,就会引起通用保护异常。 80386支持的I/O地址空间大小是64K,所以构成I/O许可位图的二进制位串最大长度是64K个位,即位图的有效部分最大为8K字节。一个任务实际需要使用的I/O许可位图大小通常要远小于这个数目。 当前任务使用的I/O许可位图存储在当前任务TSS中低端的64K字节内。I/O许可位图总以字节为单位存储,所以位串所含的位数总被认为是8的倍数。从前文中所述的TSS格式可见,TSS内偏移66H的字确定I/O许可位图的开始偏移。由于I/O许可位图最长可达8K字节,所以开始偏移应小于56K,但必须大于等于104,因为TSS中前104字节为TSS的固定格式,用于保存任务的状态。 1.I/O访问许可检查细节保护模式下处理器在执行I/O指令时进行许可检查的细节如下所示。 (1)若CPL<=IOPL,则直接转步骤(8);(2)取得I/O位图开始偏移;(3)计算I/O地址对应位所在字节在I/O许可位图内的偏移;(4)计算位偏移以形成屏蔽码值,即计算I/O地址对应位在字节中的第几位;(5)把字节偏移加上位图开始偏移,再加1,所得值与TSS界限比较,若越界,则产生出错码为0的通用保护故障;(6)若不越界,则从位图中读对应字节及下一个字节;(7)把读出的两个字节与屏蔽码进行与运算,若结果不为0表示检查未通过,则产生出错码为0的通用保护故障;(8)进行I/O访问。设某一任务的TSS段如下: TSSSEG                  SEGMENT PARA USE16                        TSS     <>             ;TSS低端固定格式部分                        DB      8 DUP(0)       ;对应I/O端口00H—3FH                        DB      10000000B      ;对应I/O端口40H—47H                        DB      01100000B      ;对用I/O端口48H—4FH                        DB      8182 DUP(0ffH) ;对应I/O端口50H—0FFFFH                        DB      0FFH           ;位图结束字节TSSLen                  =       $TSSSEG                  ENDS 再假设IOPL=1,CPL=3。那么如下I/O指令有些能正常执行,有些会引起通用保护异常:                         in      al,21h  ;(1)正常执行                        in      al,47h  ;(2)引起异常                        out     20h,al  ;(3)正常实行                        out     4eh,al  ;(4)引起异常                        in      al,20h  ;(5)正常执行                        out     20h,eax ;(6)正常执行                        out     4ch,ax  ;(7)引起异常                        in      ax,46h  ;(8)引起异常                        in      eax,42h ;(9)正常执行 由上述I/O许可检查的细节可见,不论是否必要,当进行许可位检查时,80386总是从I/O许可位图中读取两个字节。目的是为了尽快地执行I/O许可检查。一方面,常常要读取I/O许可位图的两个字节。例如,上面的第(8)条指令要对I/O位图中的两个位进行检查,其低位是某个字节的最高位,高位是下一个字节的最低位。可见即使只要检查两个位,也可能需要读取两个字节。另一方面,最多检查四个连续的位,即最多也只需读取两个字节。所以每次要读取两个字节。这也是在判别是否越界时再加1的原因。为此,为了避免在读取I/O许可位图的最高字节时产生越界,必须在I/O许可位图的最后填加一个全1的字节,即0FFH。此全1的字节应填加在最后一个位图字节之后,TSS界限范围之前,即让填加的全1字节在TSS界限之内。 I/O许可位图开始偏移加8K所得的值与TSS界限值二者中较小的值决定I/O许可位图的末端。当TSS的界限大于I/O许可位图开始偏移加8K时,I/O许可位图的有效部分就有8K字节,I/O许可检查全部根据全部根据该位图进行。当TSS的界限不大于I/O许可位图开始偏移加8K时,I/O许可位图有效部分就不到8K字节,于是对较小I/O地址访问的许可检查根据位图进行,而对较大I/O地址访问的许可检查总被认为不可访问而引起通用保护故障。因为这时会发生字节越界而引起通用保护异常,所以在这种情况下,可认为不足的I/O许可位图的高端部分全为1。利用这个特点,可大大节约TSS中I/O许可位图占用的存储单元,也就大大减小了TSS段的长度。 <二>重要标志保护输入输出的保护与存储在标志寄存器EFLAGS中的IOPL密切相关,显然不能允许随便地改变IOPL,否则就不能有效地实现输入输出保护。类似地,对EFLAGS中的IF位也必须加以保护,否则CLI和STI作为敏感指令对待是无意义的。此外,EFLAGS中的VM位决定着处理器是否按虚拟8086方式工作。 80386对EFLAGS中的这三个字段的处理比较特殊,只有在较高特权级执行的程序才能执行IRET、POPF、CLI和STI等指令改变它们。下表列出了不同特权级下对这三个字段的处理情况。 不同特权级对标志寄存器特殊字段的处理 特权级 VM标志字段 IOPL标志字段 IF标志字段 CPL=0 可变(初POPF指令外) 可变 可变 0  不变 不变 可变 CPL>IOPL 不变 不变 不变 从表中可见,只有在特权级0执行的程序才可以修改IOPL位及VM位;只能由相对于IOPL同级或更内层特权级执行的程序才可以修改IF位。与CLI和STI指令不同,在特权级不满足上述条件的情况下,当执行POPF指令和IRET指令时,如果试图修改这些字段中的任何一个字段,并不引起异常,但试图要修改的字段也未被修改,也不给出任何特别的信息。此外,指令POPF总不能改变VM位,而PUSHF指令所压入的标志中的VM位总为0。 <三>演示输入输出保护的实例(实例九)下面给出一个用于演示输入输出保护的实例。演示内容包括:I/O许可位图的作用、I/O敏感指令引起的异常和特权指令引起的异常;使用段间调用指令CALL通过任务门调用任务,实现任务嵌套。 1.演示步骤实例演示的内容比较丰富,具体演示步骤如下:(1)在实模式下做必要准备后,切换到保护模式;(2)进入保护模式的临时代码段后,把演示任务的TSS段描述符装入TR,并设置演示任务的堆栈;(3)进入演示代码段,演示代码段的特权级是0;(4)通过任务门调用测试任务1。测试任务1能够顺利进行;(5)通过任务门调用测试任务2。测试任务2演示由于违反I/O许可位图规定而导致通用保护异常;(6)通过任务门调用测试任务3。测试任务3演示I/O敏感指令如何引起通用保护异常;(7)通过任务门调用测试任务4。测试任务4演示特权指令如何引起通用保护异常;(8)从演示代码转临时代码,准备返回实模式;(9)返回实模式,并作结束处理。

    标签: 汇编 保护模式 教程

    上传时间: 2013-12-11

    上传用户:nunnzhy