📄 ukfslam_sim.m
字号:
function data= ukfslam_sim(lm, wp)
format compact
configfile; % ** USE THIS FILE TO CONFIGURE SLAM **
% Setup plots
fig=figure;
plot(lm(1,:),lm(2,:),'b*')
hold on, axis equal
plot(wp(1,:),wp(2,:), 'g', wp(1,:),wp(2,:),'g.')
xlabel('metres'), ylabel('metres')
set(fig, 'name', 'UKF-SLAM Simulator')
h= setup_animations;
veh= [0 -WHEELBASE -WHEELBASE; 0 -2 2]; % for vehicle animation
plines=[]; % for laser line animation
pcount=0;
% Initialise states and other global variables
global XX PX DATA
xtrue= zeros(3,1);
XX= zeros(3,1);
PX= eye(3)*eps;
DATA= initialise_store(XX,PX,XX); % stored data for off-line
% Initialise other variables and constants
dt= DT_CONTROLS; % change in time between predicts
dtsum= 0; % change in time since last observation
ftag= 1:size(lm,2); % identifier for each landmark
da_table= zeros(1,size(lm,2)); % data association table
iwp= 1; % index to first waypoint
G= 0; % initial steer angle
QE= Q; RE= R; if SWITCH_INFLATE_NOISE, QE= 2*Q; RE= 2*R; end % inflate estimated noises (ie, add stabilising noise)
if SWITCH_SEED_RANDOM, rand('state',SWITCH_SEED_RANDOM), randn('state',SWITCH_SEED_RANDOM), end
if SWITCH_PROFILE, profile on -detail builtin, end
% Main loop
while iwp ~= 0
% Compute true data
[G,iwp]= compute_steering(xtrue, wp, iwp, AT_WAYPOINT, G, RATEG, MAXG, dt);
if iwp==0 & NUMBER_LOOPS > 1, pack; iwp=1; NUMBER_LOOPS= NUMBER_LOOPS-1; end % perform loops: if final waypoint reached, go back to first
xtrue= vehicle_model(xtrue, V,G, WHEELBASE,dt);
[Vn,Gn]= add_control_noise(V,G,Q, SWITCH_CONTROL_NOISE);
% UKF predict step
predict (Vn,Gn,QE, WHEELBASE,dt);
% If heading known, observe heading
observe_heading(xtrue(3), SWITCH_HEADING_KNOWN);
% Incorporate observation, (available every DT_OBSERVE seconds)
dtsum= dtsum + dt;
if dtsum >= DT_OBSERVE
dtsum= 0;
% Compute true data
[z,ftag_visible]= get_observations(xtrue, lm, ftag, MAX_RANGE);
z= add_observation_noise(z,R, SWITCH_SENSOR_NOISE);
% UKF update step
[zf,idf,zn, da_table]= data_associate_known(XX,z,ftag_visible, da_table);
update(zf,RE,idf);
augment(zn,RE);
end
% Offline data store
store_data(XX, PX, xtrue);
% Plots
xt= transform_to_global(veh, xtrue);
set(h.xt, 'xdata', xt(1,:), 'ydata', xt(2,:))
if SWITCH_GRAPHICS
xv= transform_to_global(veh, XX(1:3));
pvcov= make_vehicle_covariance_ellipse(XX,PX);
set(h.xv, 'xdata', xv(1,:), 'ydata', xv(2,:))
set(h.vcov, 'xdata', pvcov(1,:), 'ydata', pvcov(2,:))
pcount= pcount+1;
if pcount == 120 % plot path infrequently
pcount=0;
set(h.pth, 'xdata', DATA.path(1,1:DATA.i), 'ydata', DATA.path(2,1:DATA.i))
end
if dtsum==0 & ~isempty(z) % plots related to observations
set(h.xf, 'xdata', XX(4:2:end), 'ydata', XX(5:2:end))
plines= make_laser_lines (z,XX(1:3));
set(h.obs, 'xdata', plines(1,:), 'ydata', plines(2,:))
pfcov= make_feature_covariance_ellipses(XX,PX);
set(h.fcov, 'xdata', pfcov(1,:), 'ydata', pfcov(2,:))
end
end
drawnow
end % end of main loop
if SWITCH_PROFILE, profile report, end
data = finalise_data(DATA);
set(h.pth, 'xdata', data.path(1,:), 'ydata', data.path(2,:))
clear global DATA
clear global XX
clear global PX
%
%
function h= setup_animations()
h.xt= patch(0,0,'b','erasemode','xor'); % vehicle true
h.xv= patch(0,0,'r','erasemode','xor'); % vehicle estimate
h.pth= plot(0,0,'k.','markersize',2,'erasemode','background'); % vehicle path estimate
h.obs= plot(0,0,'y','erasemode','xor'); % observations
h.xf= plot(0,0,'r+','erasemode','xor'); % estimated features
h.vcov= plot(0,0,'r','erasemode','xor'); % vehicle covariance ellipses
h.fcov= plot(0,0,'r','erasemode','xor'); % feature covariance ellipses
%
%
function p= make_laser_lines (rb,xv)
% compute set of line segments for laser range-bearing measurements
if isempty(rb), p=[]; return, end
len= size(rb,2);
lnes(1,:)= zeros(1,len)+ xv(1);
lnes(2,:)= zeros(1,len)+ xv(2);
lnes(3:4,:)= transform_to_global([rb(1,:).*cos(rb(2,:)); rb(1,:).*sin(rb(2,:))], xv);
p= line_plot_conversion (lnes);
%
%
function p= make_vehicle_covariance_ellipse(x,P)
% compute ellipses for plotting vehicle covariances
N= 10;
inc= 2*pi/N;
phi= 0:inc:2*pi;
circ= 2*[cos(phi); sin(phi)];
p= make_ellipse(x(1:2), P(1:2,1:2), circ);
function p= make_feature_covariance_ellipses(x,P)
% compute ellipses for plotting feature covariances
N= 10;
inc= 2*pi/N;
phi= 0:inc:2*pi;
circ= 2*[cos(phi); sin(phi)];
lenx= length(x);
lenf= (lenx-3)/2;
p= zeros (2, lenf*(N+2));
ctr= 1;
for i=1:lenf
ii= ctr:(ctr+N+1);
jj= 2+2*i; jj= jj:jj+1;
p(:,ii)= make_ellipse(x(jj), P(jj,jj), circ);
ctr= ctr+N+2;
end
%
%
function p= make_ellipse(x,P,circ)
% make a single 2-D ellipse
r= sqrtm_2by2(P);
a= r*circ;
p(2,:)= [a(2,:)+x(2) NaN];
p(1,:)= [a(1,:)+x(1) NaN];
%
%
function data= initialise_store(x,P, xtrue)
% offline storage initialisation
data.i=1;
data.path= x;
data.true= xtrue;
data.state(1).x= x;
%data.state(1).P= P;
data.state(1).P= diag(P);
data.state(1).PV= P;
%
%
function store_data(x, P, xtrue)
% add current data to offline storage
global DATA
CHUNK= 5000;
len= size(DATA.path,2);
if DATA.i == len % grow array exponentially to amortise reallocation
if len < CHUNK, len= CHUNK; end
DATA.path= [DATA.path zeros(3,len)];
DATA.true= [DATA.true zeros(3,len)];
pack
end
i= DATA.i + 1;
DATA.i= i;
DATA.path(:,i)= x(1:3);
DATA.true(:,i)= xtrue;
DATA.state(i).x= x;
%DATA.state(i).P= P;
DATA.state(i).P= diag(P);
DATA.state(i).PV= P(1:3,1:3);
%
%
function data = finalise_data(data)
% offline storage finalisation
data.path= data.path(:,1:data.i);
data.true= data.true(:,1:data.i);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -