📄 dct.v
字号:
end
always @ (posedge CLK)
if (en_ram1reg == 1'b1 && wr_cntr[6] == 1'b0)
ram1_mem[wr_cntr[5:0]] <= z_out;
always @ (posedge CLK)
if (en_ram1reg == 1'b1 && wr_cntr[6] == 1'b1)
ram2_mem[wr_cntr[5:0]] <= z_out;
always @ (posedge CLK)
begin
if (en_ram1reg == 1'b1 && rd_cntr[6] == 1'b0)
data_out <= ram2_mem[rd_cntr[5:0]];
else if (en_ram1reg == 1'b1 && rd_cntr[6] == 1'b1)
data_out <= ram1_mem[rd_cntr[5:0]];
else data_out <= 11'b0;
end
/* END MEMORY SECTION */
/* 2D-DCT implementation same as the 1D-DCT implementation */
/* First dct coeeficient appears at the output of the RAM1 after
15 + 64 clk cycles. So the 2nd DCT operation starts after 79 clk cycles. */
always @ (posedge CLK or posedge RST)
begin
if (RST)
begin
cntr79 <= 7'b0;
end
else
begin
cntr79 <= cntr79 + 1;
end
end
assign en_dct2d = RST ? 1'b0 : (cntr79 == 7'b1001111) ? 1'b1 : en_dct2d;
always @ (posedge CLK or posedge RST)
begin
if (RST)
begin en_dct2d_reg <= 1'b0; end
else
begin en_dct2d_reg <= en_dct2d ; end
end
assign data_out_final[10:0] = data_out;
always @ (posedge CLK or posedge RST )
begin
if (RST)
begin
xb0_in <= 11'b0; xb1_in <= 11'b0; xb2_in <= 11'b0; xb3_in <= 11'b0;
xb4_in <= 11'b0; xb5_in <= 11'b0; xb6_in <= 11'b0; xb7_in <= 11'b0;
end
else if (en_dct2d_reg == 1'b1)
begin
xb0_in <= data_out_final; xb1_in <= xb0_in; xb2_in <= xb1_in; xb3_in <= xb2_in;
xb4_in <= xb3_in; xb5_in <= xb4_in; xb6_in <= xb5_in; xb7_in <= xb6_in;
end
else if (en_dct2d_reg == 1'b0)
begin
xb0_in <= 11'b0; xb1_in <= 11'b0; xb2_in <= 11'b0; xb3_in <= 11'b0;
xb4_in <= 11'b0; xb5_in <= 11'b0; xb6_in <= 11'b0; xb7_in <= 11'b0;
end
end
/* register inputs, inputs read in every eighth clk*/
always @ (posedge CLK or posedge RST)
begin
if (RST)
begin
xb0_reg <= 12'b0; xb1_reg <= 12'b0; xb2_reg <= 12'b0; xb3_reg <= 12'b0;
xb4_reg <= 12'b0; xb5_reg <= 12'b0; xb6_reg <= 12'b0; xb7_reg <= 12'b0;
end
else if (cntr8 == 4'b1000)
begin
xb0_reg <= {xb0_in[10],xb0_in}; xb1_reg <= {xb1_in[10],xb1_in};
xb2_reg <= {xb2_in[10],xb2_in}; xb3_reg <= {xb3_in[10],xb3_in};
xb4_reg <= {xb4_in[10],xb4_in}; xb5_reg <= {xb5_in[10],xb5_in};
xb6_reg <= {xb6_in[10],xb6_in}; xb7_reg <= {xb7_in[10],xb7_in};
end
end
always @ (posedge CLK or posedge RST)
begin
if (RST)
begin
toggleB <= 1'b0;
end
else
begin
toggleB <= ~toggleB;
end
end
/* adder / subtractor block */
always @ (posedge CLK or posedge RST)
begin
if (RST)
begin
add_sub1b <= 12'b0; add_sub2b <= 12'b0; add_sub3b <= 12'b0; add_sub4b <= 12'b0;
end
else
begin
if (toggleB == 1'b1)
begin
add_sub1b <= (xb0_reg + xb7_reg); add_sub2b <= (xb1_reg + xb6_reg);
add_sub3b <= (xb2_reg + xb5_reg); add_sub4b <= (xb3_reg + xb4_reg);
end
else if (toggleB == 1'b0)
begin
add_sub1b <= (xb7_reg - xb0_reg); add_sub2b <= (xb6_reg - xb1_reg);
add_sub3b <= (xb5_reg - xb2_reg); add_sub4b <= (xb4_reg - xb3_reg);
end
end
end
always @ (posedge RST or posedge CLK)
begin
if (RST)
begin
addsub1b_comp <= 11'b0; save_sign1b <= 1'b0;
end
else
begin
case (add_sub1b[11])
1'b0: begin
addsub1b_comp <= add_sub1b; save_sign1b <= 1'b0;
end
1'b1: begin
addsub1b_comp <= (-add_sub1b) ; save_sign1b <= 1'b1;
end
endcase
end
end
always @ (posedge RST or posedge CLK)
begin
if (RST)
begin
addsub2b_comp <= 11'b0; save_sign2b <= 1'b0;
end
else
begin
case (add_sub2b[11])
1'b0: begin
addsub2b_comp <= add_sub2b; save_sign2b <= 1'b0;
end
1'b1: begin
addsub2b_comp <= (-add_sub2b) ; save_sign2b <= 1'b1;
end
endcase
end
end
always @ (posedge RST or posedge CLK)
begin
if (RST)
begin
addsub3b_comp <= 11'b0; save_sign3b <= 1'b0;
end
else
begin
case (add_sub3b[11])
1'b0: begin
addsub3b_comp <= add_sub3b; save_sign3b <= 1'b0;
end
1'b1: begin
addsub3b_comp <= (-add_sub3b) ; save_sign3b <= 1'b1;
end
endcase
end
end
always @ (posedge RST or posedge CLK)
begin
if (RST)
begin
addsub4b_comp <= 11'b0; save_sign4b <= 1'b0;
end
else
begin
case (add_sub4b[11])
1'b0: begin
addsub4b_comp <= add_sub4b; save_sign4b <= 1'b0;
end
1'b1: begin
addsub4b_comp <= (-add_sub4b) ; save_sign4b <= 1'b1;
end
endcase
end
end
assign p1b_all = addsub1b_comp * memory1a[6:0];
assign p2b_all = addsub2b_comp * memory2a[6:0];
assign p3b_all = addsub3b_comp * memory3a[6:0];
assign p4b_all = addsub4b_comp * memory4a[6:0];
/* The following instantiation can be used while targetting Virtex2 */
//MULT18X18 mult1b (.A({9'b0,addsub1b_comp}), .B({11'b0,memory1a[6:0]}), .P(p1b_all));
//MULT18X18 mult2b (.A({9'b0,addsub2b_comp}), .B({11'b0,memory2a[6:0]}), .P(p2b_all));
//MULT18X18 mult3b (.A({9'b0,addsub3b_comp}), .B({11'b0,memory3a[6:0]}), .P(p3b_all));
//MULT18X18 mult4b (.A({9'b0,addsub4b_comp}), .B({11'b0,memory4a[6:0]}), .P(p4b_all));
always @ (posedge RST or posedge CLK)
begin
if (RST)
begin
p1b <= 20'b0; p2b <= 20'b0; p3b <= 20'b0; p4b <= 20'b0;
end
else if (i_wait == 2'b00)
begin
p1b <= (save_sign1b ^ memory1a[7]) ? (-p1b_all[17:0]) :(p1b_all[17:0]);
p2b <= (save_sign2b ^ memory2a[7]) ? (-p2b_all[17:0]) :(p2b_all[17:0]);
p3b <= (save_sign3b ^ memory3a[7]) ? (-p3b_all[17:0]) :(p3b_all[17:0]);
p4b <= (save_sign4b ^ memory4a[7]) ? (-p4b_all[17:0]) :(p4b_all[17:0]);
end
end
/*always @ (posedge RST or posedge CLK)
begin
if (RST)
begin
p1b <= 16'b0; p2b <= 16'b0; p3b <= 16'b0; p4b <= 16'b0; //indexj<= 7;
end
else if (i_wait == 2'b00)
begin
p1b <= (save_sign1b ^ memory1a[7]) ? (-addsub1b_comp * memory1a[6:0]) :(addsub1b_comp * memory1a[6:0]);
p2b <= (save_sign2b ^ memory2a[7]) ? (-addsub2b_comp * memory2a[6:0]) :(addsub2b_comp * memory2a[6:0]);
p3b <= (save_sign3b ^ memory3a[7]) ? (-addsub3b_comp * memory3a[6:0]) :(addsub3b_comp * memory3a[6:0]);
p4b <= (save_sign4b ^ memory4a[7]) ? (-addsub4b_comp * memory4a[6:0]) :(addsub4b_comp * memory4a[6:0]);
end
end
*/
/* The above if else statement used to get the add_sub signals can also be implemented using the adsu16 library element as follows */
//ADSU16 adsu16_5 (.A({8'b0,xb0_reg}), .B({8'b0,xb7_reg}), .ADD(toggleB), .CI(1'b0), .S(add_sub1b), .OFL(open), .CO(open));
//ADSU16 adsu16_6 (.A({8'b0,xb1_reg}), .B({8'b0,xb6_reg}), .ADD(toggleB), .CI(1'b0), .S(add_sub2b), .OFL(open), .CO(open));
//ADSU16 adsu16_7 (.A({8'b0,xb2_reg}), .B({8'b0,xb5_reg}), .ADD(toggleB), .CI(1'b0), .S(add_sub3b), .OFL(open), .CO(open));
//ADSU16 adsu16_8 (.A({8'b0,xb3_reg}), .B({8'b0,xb4_reg}), .ADD(toggleB), .CI(1'b0), .S(add_sub4b), .OFL(open), .CO(open));
/* multiply the outputs of the add/sub block with the 8 sets of stored coefficients */
/* Final adder. Adding the ouputs of the 4 multipliers */
always @ (posedge CLK or posedge RST)
begin
if (RST)
begin
dct2d_int1 <= 20'b0; dct2d_int2 <= 20'b0; dct_2d_int <= 20'b0;
end
else
begin
dct2d_int1 <= (p1b + p2b);
dct2d_int2 <= (p3b + p4b);
dct_2d_int <= (dct2d_int1 + dct2d_int2);
end
end
assign dct_2d_rnd = dct_2d_int[19:8];
assign dct_2d = dct_2d_int[7] ? (dct_2d_rnd + 1'b1) : dct_2d_rnd;
/* The first 1D-DCT output becomes valid after 14 +64 clk cycles. For the first
2D-DCT output to be valid it takes 78 + 1clk to write into the ram + 1clk to
write out of the ram + 8 clks to shift in the 1D-DCT values + 1clk to register
the 1D-DCT values + 1clk to add/sub + 1clk to take compliment + 1 clk for
multiplying + 2clks to add product. So the 2D-DCT output will be valid
at the 94th clk. rdy_out goes high at 93rd clk so that the first data is valid
for the next block*/
always @ (posedge CLK or posedge RST)
begin
if (RST)
begin
cntr92 <= 8'b0;
end
else if (cntr92 < 8'b1011110)
begin
cntr92 <= cntr92 + 1;
end
else
begin
cntr92 <= cntr92;
end
end
assign rdy_out = (cntr92 == 8'b1011110) ? 1'b1 : 1'b0;
endmodule
//module ADSU8 (A, B, ADD,CI,S,OFL,CO); // synthesis syn_black_box
/*input[7:0] A,B;
input ADD,CI;
output[7:0] S;
output OFL,CO;
endmodule*/
//module MULT18X18 (A, B, P); // synthesis syn_black_box
/*input[17:0] A;
input[17:0] B;
output[35:0] P;
endmodule*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -