📄 pci_pcir_fifo_control.v
字号:
//////////////////////////////////////////////////////////////////////
//// ////
//// File name "fifo_control.v" ////
//// ////
//// This file is part of the "PCI bridge" project ////
//// http://www.opencores.org/cores/pci/ ////
//// ////
//// Author(s): ////
//// - Miha Dolenc (mihad@opencores.org) ////
//// ////
//// All additional information is avaliable in the README ////
//// file. ////
//// ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: pci_pcir_fifo_control.v,v $
// Revision 1.4 2003/08/14 13:06:03 simons
// synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.
//
// Revision 1.3 2003/07/29 08:20:11 mihad
// Found and simulated the problem in the synchronization logic.
// Repaired the synchronization logic in the FIFOs.
//
// Revision 1.2 2003/03/26 13:16:18 mihad
// Added the reset value parameter to the synchronizer flop module.
// Added resets to all synchronizer flop instances.
// Repaired initial sync value in fifos.
//
// Revision 1.1 2003/01/27 16:49:31 mihad
// Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.
//
// Revision 1.7 2002/11/27 20:36:10 mihad
// Changed the code a bit to make it more readable.
// Functionality not changed in any way.
// More robust synchronization in fifos is still pending.
//
// Revision 1.6 2002/09/30 16:03:04 mihad
// Added meta flop module for easier meta stable FF identification during synthesis
//
// Revision 1.5 2002/09/25 15:53:52 mihad
// Removed all logic from asynchronous reset network
//
// Revision 1.4 2002/03/05 11:53:47 mihad
// Added some testcases, removed un-needed fifo signals
//
// Revision 1.3 2002/02/01 15:25:12 mihad
// Repaired a few bugs, updated specification, added test bench files and design document
//
// Revision 1.2 2001/10/05 08:14:28 mihad
// Updated all files with inclusion of timescale file for simulation purposes.
//
// Revision 1.1.1.1 2001/10/02 15:33:46 mihad
// New project directory structure
//
//
/* FIFO_CONTROL module provides read/write address and status generation for
FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */
`include "pci_constants.v"
// synopsys translate_off
`include "timescale.v"
// synopsys translate_on
module pci_pcir_fifo_control
(
rclock_in,
wclock_in,
renable_in,
wenable_in,
reset_in,
flush_in,
full_out,
almost_empty_out,
empty_out,
waddr_out,
raddr_out,
rallow_out,
wallow_out
);
// address length parameter - depends on fifo depth
parameter ADDR_LENGTH = 7 ;
// independent clock inputs - rclock_in = read clock, wclock_in = write clock
input rclock_in, wclock_in;
// enable inputs - read address changes on rising edge of rclock_in when reads are allowed
// write address changes on rising edge of wclock_in when writes are allowed
input renable_in, wenable_in;
// reset input
input reset_in;
// flush input
input flush_in ;
// almost empy status output
output almost_empty_out;
// full and empty status outputs
output full_out, empty_out;
// read and write addresses outputs
output [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;
// read and write allow outputs
output rallow_out, wallow_out ;
// read address register
reg [(ADDR_LENGTH - 1):0] raddr ;
// write address register
reg [(ADDR_LENGTH - 1):0] waddr;
assign waddr_out = waddr ;
// grey code registers
// grey code pipeline for write address
reg [(ADDR_LENGTH - 1):0] wgrey_addr ; // current grey coded write address
reg [(ADDR_LENGTH - 1):0] wgrey_next ; // next grey coded write address
// next write gray address calculation - bitwise xor between address and shifted address
wire [(ADDR_LENGTH - 2):0] calc_wgrey_next = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;
// grey code pipeline for read address
reg [(ADDR_LENGTH - 1):0] rgrey_addr ; // current
reg [(ADDR_LENGTH - 1):0] rgrey_next ; // next
// next read gray address calculation - bitwise xor between address and shifted address
wire [(ADDR_LENGTH - 2):0] calc_rgrey_next = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;
// FFs for registered empty and full flags
wire empty ;
wire full ;
// almost_empty tag
wire almost_empty ;
// write allow wire - writes are allowed when fifo is not full
wire wallow = wenable_in && !full ;
// write allow output assignment
assign wallow_out = wallow ;
// read allow wire
wire rallow ;
// full output assignment
assign full_out = full ;
// clear generation for FFs and registers
wire clear = reset_in /*|| flush_in*/ ; // flush changed to synchronous operation
assign empty_out = empty ;
//rallow generation
assign rallow = renable_in && !empty ; // reads allowed if read enable is high and FIFO is not empty
// rallow output assignment
assign rallow_out = rallow ;
// almost empty output assignment
assign almost_empty_out = almost_empty ;
// at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary
// when FIFO is empty, this register provides actual read address, so first location can be read
reg [(ADDR_LENGTH - 1):0] raddr_plus_one ;
// address output mux - when FIFO is not read, current actual address is driven out, when it is read, next address is driven out to provide
// next data immediately
// done for zero wait state burst operation
assign raddr_out = rallow ? raddr_plus_one : raddr ;
always@(posedge rclock_in or posedge clear)
begin
if (clear)
begin
// initial values seem a bit odd - they are this way to allow easier grey pipeline implementation and to allow min fifo size of 8
raddr_plus_one <= #`FF_DELAY 3 ;
raddr <= #`FF_DELAY 2 ;
end
else if (flush_in)
begin
raddr_plus_one <= #`FF_DELAY waddr + 1'b1 ;
raddr <= #`FF_DELAY waddr ;
end
else if (rallow)
begin
raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ;
raddr <= #`FF_DELAY raddr_plus_one ;
end
end
/*-----------------------------------------------------------------------------------------------
Read address control consists of Read address counter and Grey Address pipeline
There are 2 Grey addresses:
- rgrey_addr is Grey Code of current read address
- rgrey_next is Grey Code of next read address
--------------------------------------------------------------------------------------------------*/
// grey coded address pipeline for status generation in read clock domain
always@(posedge rclock_in or posedge clear)
begin
if (clear)
begin
rgrey_addr <= #1 0 ;
rgrey_next <= #`FF_DELAY 1 ; // this grey code is calculated from the current binary address and loaded any time data is read from fifo
end
else if (flush_in)
begin
// when fifo is flushed, load the register values from the write clock domain.
// must be no problem, because write pointers are stable for at least 3 clock cycles before flush can occur.
rgrey_addr <= #1 wgrey_addr ;
rgrey_next <= #`FF_DELAY wgrey_next ;
end
else if (rallow)
begin
// move the pipeline when data is read from fifo and calculate new value for first stage of pipeline from current binary fifo address
rgrey_addr <= #1 rgrey_next ;
rgrey_next <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ;
end
end
/*--------------------------------------------------------------------------------------------
Write address control consists of write address counter and 2 Grey Code Registers:
- wgrey_addr represents current Grey Coded write address
- wgrey_next represents Grey Coded next write address
----------------------------------------------------------------------------------------------*/
// grey coded address pipeline for status generation in write clock domain
always@(posedge wclock_in or posedge clear)
begin
if (clear)
begin
wgrey_addr <= #1 0 ;
wgrey_next <= #`FF_DELAY 1 ;
end
else
if (wallow)
begin
wgrey_addr <= #1 wgrey_next ;
wgrey_next <= #`FF_DELAY {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ;
end
end
// write address binary counter - nothing special except initial value
always@(posedge wclock_in or posedge clear)
begin
if (clear)
// initial value 2
waddr <= #`FF_DELAY 2 ;
else
if (wallow)
waddr <= #`FF_DELAY waddr + 1'b1 ;
end
/*------------------------------------------------------------------------------------------------------------------------------
Full control:
Gray coded read address pointer is synchronized to write clock domain and compared to Gray coded next write address.
If they are equal, fifo is full.
--------------------------------------------------------------------------------------------------------------------------------*/
wire [(ADDR_LENGTH - 1):0] wclk_sync_rgrey_addr ;
reg [(ADDR_LENGTH - 1):0] wclk_rgrey_addr ;
pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_rgrey_addr
(
.data_in (rgrey_addr),
.clk_out (wclock_in),
.sync_data_out (wclk_sync_rgrey_addr),
.async_reset (clear)
) ;
always@(posedge wclock_in or posedge clear)
begin
if (clear)
wclk_rgrey_addr <= #`FF_DELAY 0 ;
else
wclk_rgrey_addr <= #`FF_DELAY wclk_sync_rgrey_addr ;
end
assign full = (wgrey_next == wclk_rgrey_addr) ;
/*------------------------------------------------------------------------------------------------------------------------------
Empty control:
Gray coded write address pointer is synchronized to read clock domain and compared to Gray coded read address pointer.
If they are equal, fifo is empty. Synchronized write pointer is also compared to Gray coded next read address. If these two are
equal, fifo is almost empty.
--------------------------------------------------------------------------------------------------------------------------------*/
wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_addr ;
reg [(ADDR_LENGTH - 1):0] rclk_wgrey_addr ;
pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_wgrey_addr
(
.data_in (wgrey_addr),
.clk_out (rclock_in),
.sync_data_out (rclk_sync_wgrey_addr),
.async_reset (clear)
) ;
always@(posedge rclock_in or posedge clear)
begin
if (clear)
rclk_wgrey_addr <= #`FF_DELAY 0 ;
else
rclk_wgrey_addr <= #`FF_DELAY rclk_sync_wgrey_addr ;
end
assign almost_empty = (rgrey_next == rclk_wgrey_addr) ;
assign empty = (rgrey_addr == rclk_wgrey_addr) ;
endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -