代码搜索结果
找到约 2,951 项符合
W 的代码
aspttdftaf.m
% [W,y,e,p,w] = aspttdftaf(x,W,d,mu,p,b,T)
%
% Performs filtering and coefficient update using the
% Transform Domain Fault Tolerant Adaptive Filter (TDFTAF).
% TDFTAF contains R redunda
asptmcfdadjlms.m
% [W,w,x,y,e,p,yF,feF] = asptmcfdadjlms(NC,W,x,xn,dn,yF,feF,S,SE,p,mu,b,c)
%
% Performs filtering and coefficient update using the
% Multi Channel Frequency Domain Adjoint LMS (MCFDADJLMS)
asptrls.m
% [w,y,e,R]=asptrls(x,w,d,R,a)
%
% Performs filtering and coefficient update using the
% Recursive Least Squares (RLS) Adaptive algorithm.
%
% Input Parameters [Size]::
% x : vector
init_mvsslms.m
% [w,x,d,y,e,g,mu] = init_mvsslms(L,w0,x0,d0,mu0,g0)
% Creates and initializes the variables required for the
% Variable Step Size LMS algorithm.
%
% Input Parameters::
% L : adapt
init_drlms.m
% [w,x,d,y,e]=init_drlms(L,w0,x0,d0)
%
% Creates and initializes the variables required for the
% Data Reusing Least Mean Squares algorithm.
%
% Input Parameters [Size] ::
% L
init_adjlms.m
% [w,x,y,d,e,p] = init_adjlms(L,s,se,w0,x0,d0,y0,e0)
%
% Creates and initializes the variables required for the
% Adjoint Least Mean Squares (ADJLMS) Adaptive Filter algorithm
% for us
asptsovnlms.m
% [w,y,e,xb,p]= asptsovnlms(xn,xb,w,d,mu,L1,L2,p,b)
%
% Performs filtering and coefficient update using the
% Second Order Volterra Normalized Least Mean Squares
% Adaptive Filter algori
init_sovvsslms.m
% [w,x,d,y,e,g,mu]=init_sovvsslms(L1,L2,w0,x0,d0,mu0,g0)
%
% Creates and initializes the variables required for the
% Second Order Volterra Variable Step Size Least Mean
% Squares ad
init_fxlms.m
% [w,x,y,d,e,p,fx] = init_fxlms(L,s,se,w0,x0,d0,y0)
%
% Creates and initializes the variables required for the
% Filtered-x Least Mean Squares (FXLMS) Adaptive Filter algorithm
% for u
asptlclms.m
% [w,y,e]= asptlclms(x,w,d,mu,c,a)
%
% Performs filtering and coefficient update using the
% Linearly Constrained LMS adaptive algorithm,
% subject to the constraint c' * w = a.
%
% In