代码搜索结果
找到约 2,951 项符合
W 的代码
init_vsslms.m
% [w,x,d,y,e,g,mu] = init_vsslms(L,w0,x0,d0,mu0,g0)
% Creates and initializes the variables required for the
% Variable Step Size LMS algorithm.
%
% Input Parameters::
% L : adapti
init_rdrnlms.m
% [w,x,d,y,e,p]=init_rdrnlms(L,k,w0,x0,d0)
%
% Creates and initializes the variables required for the
% Recent Data Reusing Normalized Least Mean Squares algorithm.
%
% Input Parameters [
asptnlms.m
% [w,y,e,p]= asptnlms(x,w,d,mu,p,b)
%
% Performs filtering and coefficient update using the
% Normalized Least Mean Squares Adaptive algorithm.
%
% Input Parameters [Size]::
% x : in
asptrdrnlms.m
% [w,y,e,p]= asptrdrnlms(x,w,d,mu,p,b,k)
%
% Performs filtering and coefficient update using the
% Recent Data Reusing Normalized Least Mean Squares
% (RDRNLMS) algorithm.
% RDRNLMS upda
asptleakynlms.m
% [w,y,e,p]= asptleakynlms(x,w,d,mu,a,p,b)
%
% Performs filtering and coefficient update using the
% Leaky Normalized Least Mean Squares algorithm. The
% update equation is given by
%
asptbnlms.m
% [w,x,y,e,p]=asptbnlms(x,xn,dn,w,mu,p,b)
%
% Performs filtering and coefficient update using the
% Block Normalized Least Mean Squares (BNLMS) algorithm.
% BNLMS updates the N filter c
init_mcfxlms.m
% [w,x,y,e,d,p,fx] = init_mcfxlms(L,Nref,Nact,Nsens,s,se,w0,x0,d0,y0,fx0)
%
% Creates and initializes the variables required for the
% Multichannel Filtered-X Least Mean Squares (MCFXLMS)
init_mcadjlms.m
% [w,x,y,d,e,p] = init_mcadjlms(L,Nref,Nact,Nsens,s,se,w0,x0,d0,y0,e0)
%
% Creates and initializes the variables required for the
% Multi-channel Adjoint LMS (MCADJLMS) algorithm
% for
asptsovlms.m
% [w,y,e,xb]= asptsovlms(xn,xb,w,d,mu,L1,L2,alg)
%
% Sample per sample filtering and coefficient update using the
% Second Order Volterra Least Mean Squares or one of its variants.
% The LM
asptpbfdaf.m
% [W,X,x,y,e,Px,w]=asptpbfdaf(M,x,xn,dn,X,W,mu,n,c,b,Px)
%
% Performs filtering and coefficient update using the
% Partitioned Block Frequency Domain Adaptive algorithm.
%
% Input Paramete