代码搜索结果
找到约 2,951 项符合
W 的代码
init_sovnlms.m
% [w,x,d,y,e,p]=init_sovnlms(L1,L2,w0,x0,d0)
%
% Creates and initializes the variables required for the
% Second Order Volterra Normalized Least Mean Squares
% adaptive algorithm.
%
init_nlms.m
% [w,x,d,y,e,p]=init_nlms(L,w0,x0,d0)
%
% Creates and initializes the variables required for the
% Normalized Least Mean Squares Adaptive Filter algorithm.
%
% Input Parameters [Size]::
init_rls.m
% [w,x,d,e,R,y]=init_rls(L,b,w0,x0,d0)
%
% Creates and initializes the variables required for the
% Recursive Least Squares (RLS) Adaptive Filter.
%
% Input Parameters::
% L : Ada
asptfdadjlms.m
% [W,w,x,y,e,p,yF,feF] = asptfdadjlms(NC,W,x,xn,d,yF,feF,S,SE,p,mu,b,c)
%
% Performs filtering and coefficient update using the
% Frequency Domain Adjoint Least Mean Squares (FDADJLMS) alg
asptdrnlms.m
% [w,y,e,p]= asptdrnlms(x,w,d,mu,p,b,k)
%
% Performs filtering and coefficient update using the
% Data Reusing Normalized Least Mean Squares (DRNLMS)
% algorithm. DRLMS updates the filter c
asptmcadjlms.m
% [w,y,e,p] = asptmcadjlms(w,x,e,y,s,se,d,p,mu,b)
%
% Performs filtering and coefficient update using the
% Multichannel Adjoint Least Mean Squares (MCADJLMS) algorithm
% for use in A
asptfdfxlms.m
% [W,w,x,y,e,p,yF,fxF] = asptfdfxlms(NC,W,x,xn,d,yF,fxF,S,SE,p,mu,b,c)
%
% Performs filtering and coefficient update using the block processing
% Frequency Domain Filtered-x Least Mean Squa
asptdrlms.m
% [w,y,e]= asptdrlms(x,w,d,mu,alg,k)
%
% Performs filtering and coefficient update using the
% Data Reusing Least Mean Squares (DRLMS) algorithm.
% DRLMS updates the filter coefficients k t
asptmcfxlms.m
% [w,y,e,p,fx] = asptmcfxlms(w,x,y,s,se,d,fx,p,mu,b)
%
% Performs filtering and coefficient update using the
% Multichannel Filtered-X Least Mean Squares (MCFXLMS) algorithm
% (also k
asptsharf.m
% [w,u,y,e,Px,Py] = asptsharf(N,M,w,u,x,d,e,c,mu,Px,Py)
%
% Performs filtering and coefficient update using the
% Simple Hyperstable Adaptive Recursive Filter (SHARF)
% algorithm. The f