普通GPS接收机在特殊环境下,如在高楼林立的城市中心,林木遮挡的森林公路,特别是在隧道和室内环境的情况下,由于卫星信号非常微弱,载噪比(Carrier Noise Ratio,C/No)通常都在34dB-Hz以下,很难有效捕获到卫星信号,导致无法正常定位。恶劣条件下的定位有广阔的发展和应用前景,特别是在交通事故、火灾和地震等极端环境下,快速准确定位当事者所处位置对于降低事态损失和营救受伤者是极为重要的。欧美和日本等发达国家也都制定了相应的提高恶劣条件下高灵敏度定位能力的发展政策。而高灵敏度GPS接收机定位的关键在于GPS微弱信号的处理。 本课题的主要研究内容是针对GPS微弱信号改进处理方法。针对传统GPS接收机信号捕获中的串行搜索方法提出了基于批处理的微弱信号捕获方法,来提高低信噪比情况下微弱信号的捕获能力,实现快速高灵敏度的准确捕获;针对捕获微弱信号处理大量数据导致的运算量激增,运用双块零拓展(Double Block Zero Padding,DBZP)处理方法减少运算量同时缩短捕获时间。针对传统GPS接收机延迟锁相环跟踪算法提出了基于卡尔曼滤波的新型捕获算法,减小延迟锁相环失锁造成的信号跟踪丢失概率,来提高恶劣环境下低信噪比信号的跟踪能力,实现微弱信号的连续可靠跟踪。通过提高GPS微弱信号的捕获与跟踪能力,进而使GPS接收机在恶劣环境下卫星信号微弱时能够实现较好的定位与导航。 通过拟合GPS接收机实际接收到的原始数据,构造出不同载噪比的数字信号,分别对提出的针对微弱信号的捕获与跟踪算法进行仿真比较验证,结果表明,对接收机后端信号处理部分作出的算法改进使得GPS接收机可以更好的处理微弱信号,并且具有较高的灵敏度和精度。文章同时针对提出的数据处理特征使用FPGA技术对算法主要的数据处理部分进行了初步的构架实现并进行了板级验证,结果表明,利用FPGA技术可以较好的实现算法的数据处理功能。文章最后给出了结论,通过提出的基于批处理和基于DBZP方法的捕获算法以及基于卡尔曼滤波的信号跟踪算法,可以有效地解决微弱GPS信号处理的难题,进而实现微弱信号环境下的定位与导航。
上传时间: 2013-04-24
上传用户:变形金刚
FEATURES Unique 1-Wire interface requires only one port pin for communication Multidrop capability simplifies distributed temperature sensing applications Requires no external components Can be powered from data line. Power supply range is 3.0V to 5.5V Zero standby power required Measures temperatures from -55°C to +125°C. Fahrenheit equivalent is -67°F to +257°F ±0.5°C accuracy from -10°C to +85°C Thermometer resolution is programmable from 9 to 12 bits Converts 12-bit temperature to digital word in 750 ms (max.) User-definable, nonvolatile temperature alarm settings Alarm search command identifies and addresses devices whose temperature is outside of programmed limits (temperature alarm condition) Applications include thermostatic controls, industrial systems, consumer products, thermometers, or any thermally sensitive system
上传时间: 2013-08-04
上传用户:CHENKAI
Abstract: Using a DAC and a microprocessor supervisor, the system safety can be improved in industrial controllers, programmablelogiccontrollers (PLC), and data-acquisition systems. The analog output is set to zero-scale (or pin-programmable midscale) when amicroprocessor failure, optocoupler failure, or undervoltage condition occurs. A simple application is shown on how to implement thisfunction.
上传时间: 2013-10-17
上传用户:sjb555
Differential Nonlinearity: Ideally, any two adjacent digitalcodes correspond to output analog voltages that are exactlyone LSB apart. Differential non-linearity is a measure of theworst case deviation from the ideal 1 LSB step. For example,a DAC with a 1.5 LSB output change for a 1 LSB digital codechange exhibits 1⁄2 LSB differential non-linearity. Differentialnon-linearity may be expressed in fractional bits or as a percentageof full scale. A differential non-linearity greater than1 LSB will lead to a non-monotonic transfer function in aDAC.Gain Error (Full Scale Error): The difference between theoutput voltage (or current) with full scale input code and theideal voltage (or current) that should exist with a full scale inputcode.Gain Temperature Coefficient (Full Scale TemperatureCoefficient): Change in gain error divided by change in temperature.Usually expressed in parts per million per degreeCelsius (ppm/°C).Integral Nonlinearity (Linearity Error): Worst case deviationfrom the line between the endpoints (zero and full scale).Can be expressed as a percentage of full scale or in fractionof an LSB.LSB (Lease-Significant Bit): In a binary coded system thisis the bit that carries the smallest value or weight. Its value isthe full scale voltage (or current) divided by 2n, where n is theresolution of the converter.Monotonicity: A monotonic function has a slope whose signdoes not change. A monotonic DAC has an output thatchanges in the same direction (or remains constant) for eachincrease in the input code. the converse is true for decreasing codes.
标签: Converters Defini DAC
上传时间: 2013-10-30
上传用户:stvnash
ANALOG INPUT BANDWIDTH is a measure of the frequencyat which the reconstructed output fundamental drops3 dB below its low frequency value for a full scale input. Thetest is performed with fIN equal to 100 kHz plus integer multiplesof fCLK. The input frequency at which the output is −3dB relative to the low frequency input signal is the full powerbandwidth.APERTURE JITTER is the variation in aperture delay fromsample to sample. Aperture jitter shows up as input noise.APERTURE DELAY See Sampling Delay.BOTTOM OFFSET is the difference between the input voltagethat just causes the output code to transition to the firstcode and the negative reference voltage. Bottom Offset isdefined as EOB = VZT–VRB, where VZT is the first code transitioninput voltage and VRB is the lower reference voltage.Note that this is different from the normal Zero Scale Error.CONVERSION LATENCY See PIPELINE DELAY.CONVERSION TIME is the time required for a completemeasurement by an analog-to-digital converter. Since theConversion Time does not include acquisition time, multiplexerset up time, or other elements of a complete conversioncycle, the conversion time may be less than theThroughput Time.DC COMMON-MODE ERROR is a specification which appliesto ADCs with differential inputs. It is the change in theoutput code that occurs when the analog voltages on the twoinputs are changed by an equal amount. It is usually expressed in LSBs.
上传时间: 2013-11-12
上传用户:pans0ul
Specification: 输入信号:DC9-32V&AC100-240V 适用负载:电热负载,电感负载 控制方式:零点触发(Zero cross turn-on) 输入额定电压:AC 110-440±10% 输入额定电流:200-400A 使用频率:50/60Hz 使用环境:-10℃-50℃ 90%RH 冷却方式:风冷式
上传时间: 2013-11-14
上传用户:拔丝土豆
AT89C2051驱动步进电机的电路和源码:AT89C2051驱动步进电机的电路和源码 程序:stepper.c stepper.hex/* * STEPPER.C * sweeping stepper's rotor cw and cww 400 steps * Copyright (c) 1999 by W.Sirichote */#i nclude c:\mc5151io.h /* include i/o header file */ #i nclude c:\mc5151reg.hregister unsigned char j,flag1,temp; register unsigned int cw_n,ccw_n;unsigned char step[8]={0x80,0xc0,0x40,0x60,0x20,0x30,0x10,0x90} #define n 400/* flag1 mask byte 0x01 run cw() 0x02 run ccw() */main(){ flag1=0; serinit(9600); disable(); /* no need timer interrupt */ cw_n = n; /* initial step number for cw */ flag1 |=0x01; /* initial enable cw() */while(1){ { tick_wait(); /* wait for 10ms elapsed */energize(); /* round-robin execution the following tasks every 10ms */ cw(); ccw(); } }}cw(){ if((flag1&0x01)!=0) { cw_n--; /* decrement cw step number */ if (cw_n !=0) j++; /* if not zero increment index j */ else {flag1&=~0x01; /* disable cw() execution */ ccw_n = n; /* reload step number to ccw counter */ flag1 |=0x02; /* enable cww() execution */ } }
上传时间: 2013-11-21
上传用户:boyaboy
The #1 Step-by-Step Guide to labviewNow Completely Updated for labview 8! Master labview 8 with the industry's friendliest, most intuitive tutorial: labview for Everyone, Third Edition. Top labview experts Jeffrey Travis and Jim Kring teach labview the easy way: through carefully explained, step-by-step examples that give you reusable code for your own projects! This brand-new Third Edition has been fully revamped and expanded to reflect new features and techniques introduced in labview 8. You'll find two new chapters, plus dozens of new topics, including Project Explorer, AutoTool, XML, event-driven programming, error handling, regular expressions, polymorphic VIs, timed structures, advanced reporting, and much more. Certified labview Developer (CLD) candidates will find callouts linking to key objectives on NI's newest exam, making this book a more valuable study tool than ever. Not just what to d why to do it! Use labview to build your own virtual workbench Master labview's foundations: wiring, creating, editing, and debugging VIs; using controls and indicators; working with data structures; and much more Learn the "art" and best practices of effective labview development NEW: Streamline development with labview Express VIs NEW: Acquire data with NI-DAQmx and the labview DAQmx VIs NEW: Discover design patterns for error handling, control structures, state machines, queued messaging, and more NEW: Create sophisticated user interfaces with tree and tab controls, drag and drop, subpanels, and more Whatever your application, whatever your role, whether you've used labview or not, labview for Everyone, Third Edition is the fastest, easiest way to get the results you're after!
上传时间: 2013-10-14
上传用户:shawvi
Complete support for EBNF notation; Object-oriented parser design; C++ output; Deterministic bottom-up "shift-reduce" parsing; SLR(1), LALR(1) and LR(1) table construction methods; Automatic parse tree creation; Possibility to output parse tree in XML format; Verbose conflict diagnostics; Generation of tree traverse procedures
标签: Object-oriented Deterministic Complete notation
上传时间: 2014-11-29
上传用户:kr770906
This hands-on, one-stop guide delivers the focused, streamlined direction you need to get your Web solutions up and running quickly. Zero in on key ASP.NET configuration details and techniques using quick-reference tables, lists, coding and more.
标签: streamlined direction hands-on delivers
上传时间: 2015-01-11
上传用户:Thuan