前言这本《51CPLD学习板实验指导书》是配合老树工作室开发的51CPLD学习板撰写的。由于时间有限,其中难免有错误和表达不完整的地方;但是,所附的原理图和程序代码基本上都是在产品中实际使用和验证过的,并经过了长时间的连续测试。读者可以直接拿去使用;这是这块开发板和实验指导书的特点所在。欢迎读者发email到:laoshu0902@163.com提出您的宝贵意见!如果您在这块学习板上写出自己的有特点的代码、应用,也欢迎来邮件;经过验证后,我们将把您的这部分内容放到《实验指导书》中,并在版本页和实验指导书的相关部分注明您的名字。
上传时间: 2014-12-27
上传用户:风之骄子
keil c51 v9.01此版不是汉化中文版,是英文版来的。ARM发布Keil μVision4集成开发环境(IDE),用来在微控制器和智能卡设备上创建、仿真和调试嵌入式应用。 μVision4 IDE是为增强开发人员的工作效率设计的,有了它可以更快速、更高效地开发和检验程序。通过μVision4 IDE中引入的灵活的窗口管理系统,开发人员可以使用多台监视器,在可视界面任何地方全面控制窗口放置。 新用户界面可以更好地利用屏幕空间,更有效地组织多个窗口,为开发应用提供整齐高效的环境。 μVision4在μVision3的成功经验的基础上增加了:* System Viewer (系统查看程序)窗口,提供了设备外围寄存器信息,这些信息可以在System Viewer窗口内部直接更改。* Debug Restore Views (调试恢复视图)允许保存多个窗口布局,为程序分析迅速选择最适合的调试视图。* Multi-Project Workspace(多项目工作空间)为处理多个并存的项目提供了简化的方法,如引导加载程序和应用程序。* 为基于ARM Cortex 处理器的MCU提供了Data and instruction trace(数据和指令追踪)功能。* 扩展了Device Simulation(设备仿真)功能以支持许多新设备,如Luminary、NXP和东芝生产的基于ARM Cortex-M3处理器的MCU;Atmel SAM7/9;及新的8051衍生品,如Infineon XC88x和SiLABS 8051Fxx。* 支持许多debug adapter interfaces(调试适配器接口),包括ADI miDAS Link、Atmel SAM-ICE、Infineon DAS和ST-Link。
上传时间: 2013-10-31
上传用户:qingdou
单片机大虾是怎么样炼成的 强烈要求学习单片机的同志们看完!前言:近来在论坛总是见到一些菜鸟们在大叫:“我想学单片机”,“我要学单片机”,“如何入门啊?”,“你们怎么这么厉害,是怎样学的??”等等等等一系列的问题,实在是看多了也感到烦了,今天,就由我电子白菜厚着面皮,顶着无数老虾的砖头,在这里写上一篇单片机学习心得,让菜鸟们勇敢地跨出第一步。首先解释什么是虾米先,以我个人意见吧。1、来单片机论坛的时候能够看懂大多数家伙在说什么,(当然不是看懂他们在灌水的帖子啦)并且能适当地提出问题(非弱智的问题)和讨论,解答别人的问题。2、当希望自己用单片机开发一个东东,或公司要求开发一个方案的时候,能够很快地在心中建立一个基本模型,知道应该需要些什么知识,而自己又掌握多少,并根据一定的灵感开始搜索资料。就是以上这2 点了,如果你满足了,基本下面的东西你就当作是故事来读就可以了。然后是心态问题,不久前看到有人这么问:“我想学单片机啊,因为听说很有钱途,请问学那种单片机最有钱途?”这个问题,我看到了就觉得反感,可以这么说,在这个坛子混的单片机大虾只有两种:第一、是一直从事单片机类工作的;第二、是爱好者,爱好者包括从事单片机工作的和非单片机工作的。的确,单片机是有一定的钱途,但对于那些本来不是从事单片机工作的,而又没有兴趣的,单从钱的角度出发的家伙,想学好单片机??恐怕是做白日梦。
标签: 单片机
上传时间: 2013-11-04
上传用户:firstbyte
PIC16F877 单片机的键盘和LED 数码显示接口 1 PIC16F877单片机与键盘和LED数码显示的硬件接口电路单片机的许多应用都需要进行人机对话,最简单的人机对话需要LED 数码管显示数字和少量字符;键盘是解决计算机输入的简单手段;借此可以向计算机输入程序、置数、送操作命令、控制程序的执行等等,所以使用非常广泛。图1 键盘、LED数码显示与PIC16F877 单片机的接口电路本例中采用8 个按键组成的小键盘,4 只共阴极的LED 数码管,采用4 片74LS373 驱动数码管,采用的驱动方法是静态方式。使用1 片74LS245 作为键盘的接口;这些外围器件与PIC16F877 单片机的接口电路如图1 所示,这种连接方法与51 系列的单片机连接方法一样,其他的连接方法还有好几种,PIC16F877 单片机的键盘输入接法还有其他特殊而十分方便好用的方式。8 键键盘通过74LS245 与单片机相连,键盘按键状态的数据输入由RC3 输出脚控制;当RC3=“0”时,键盘状态从74LS245 的A 端输出到单片机的PORTB口,此时读PORTB口的数据即为键盘状态。为了及时地响应键盘操作,需要经常对键盘进行扫描;扫描的方式有许多种,我们将键盘的扫描程序安排在主程序的循环执行过程中的方式,并采用20ms延迟来消除按键的抖动问题,此外,为了实现每按键一次只响应一次的功能,在执行相应的按键程序之前,必须确保按键已经松开;在本例中这一措施有效的防止了数据抖动过快的问题。LED 数码显示有动态扫描和静态显示两种方式(图1 采取的方式为静态方式),在动态扫描方式中,各数码显示是轮流点亮的,即控制数码显示的位选信号和相应的要显示的数码的字形代码同时逐一送出,反复不已,由于视觉的暂留现象,却好象全都点亮着,这种电路的接法以后再介绍。在静态方式中,只要将数据送出锁存以后,各数码显示的数据不需要刷新,只要数据不需改变,就可以不去管他,所以称为静态显示。在图1 电路中,输出显示的操作简化为对74LS373 的并口操作而已。由于静态方式的工作原理比较简单,编程也比较直观简单,程序间的相互关联很少。因此编程容易,但要增加硬件,成本较高;与之相比,动态扫描的编程虽然要复杂一些,但因其所用硬件少,成本低。由数码转化为字形代码可采用软件译码、硬件译码等两种方式。软件译码是将各数码的字形代码构成一个表格存储于内存之中,在显示数码时,通过执行查表程序而得到相应的字形代码,再将之送入数码显示输出电路进行显示,本例即采用这种方式,这种方式的编程与单片机有关,在程序中给出了PIC16F877 的编程例程,对需要熟悉PIC16F877 单片机的人员有一定的参考价值。硬件译码则采用CD4511、74LS46、74LS47、74LS48、74LS49等BCD 码—7段锁存、译码、驱动芯片直接译出字形代码,点亮LED。74LS373 由LE 端对要显示的数据进行锁存控制,实现LED 的静态显示。采用了PIC16F877 的端口输出操作,模拟74LS373 的数据锁存时序,即由软件实现数据锁存,这种方法可以十分容易的改变时序和延迟长短,使高速设备可以与低速设备联系配合好,设计简单方便,不好的地方是编程较长和稍微复杂一点。这种编程方法在下面的程序中有很好的体现。
上传时间: 2013-10-29
上传用户:cuiyashuo
单片机串行通信发射机 我所做的单片机串行通信发射机主要在实验室完成,参考有关的书籍和资料,个人完成电路的设计、焊接、检查、调试,再根据自己的硬件和通信协议用汇编语言编写发射和显示程序,然后加电调试,最终达到准确无误的发射和显示。在这过程中需要选择适当的元件,合理的电路图扎实的焊接技术,基本的故障排除和纠正能力,会使用基本的仪器对硬件进行调试,会熟练的运用汇编语言编写程序,会用相关的软件对自己的程序进行翻译,并烧进芯片中,要与对方接收机统一通信协议,要耐心的反复检查、修改和调试,直到达到预期目的。单片机串行通信发射机采用串行工作方式,发射并显示两位数字信息,既显示00-99,使数据能够在不同地方传递。硬件部分主要分两大块,由AT89C51和多个按键组成的控制模块,包括时钟电路、控制信号电路,时钟采用6MHZ晶振和30pF的电容来组成内部时钟方式,控制信号用手动开关来控制,P1口来控制,P2、P3口产生信号并通过共阳极数码管来显示,软件采用汇编语言来编写,发射程序在通信协议一致的情况下完成数据的发射,同时显示程序对发射的数据加以显示。毕业设计的目的是了解基本电路设计的流程,丰富自己的知识和理论,巩固所学的知识,提高自己的动手能力和实验能力,从而具备一定的设计能力。我做得的毕业设计注重于对单片机串行发射的理论的理解,明白发射机的工作原理,以便以后单片机领域的开发和研制打下基础,提高自己的设计能力,培养创新能力,丰富自己的知识理论,做到理论和实际结合。本课题的重要意义还在于能在进一步层次了解单片机的工作原理,内部结构和工作状态。理解单片机的接口技术,中断技术,存储方式,时钟方式和控制方式,这样才能更好的利用单片机来做有效的设计。我的毕业设计分为两个部分,硬件部分和软件部分。硬件部分介绍:单片机串行通信发射机电路的设计,单片机AT89C51的功能和其在电路的作用。介绍了AT89C51的管脚结构和每个管脚的作用及各自的连接方法。AT89C51 与MCS-51 兼容,4K字节可编程闪烁存储器,寿命:1000次可擦,数据保存10年,全静态工作:0HZ-24HZ,三级程序存储器锁定,128*8 位内部RAM,32 跟可编程I/O 线,两个16 位定时/计数器,5 个中断源,5 个可编程串行通道,低功耗的闲置和掉电模式,片内震荡和时钟电路,P0和P1 可作为串行输入口,P3口因为其管脚有特殊功能,可连接其他电路。例如P3.0RXD 作为串行输出口,其中时钟电路采用内时钟工作方式,控制信号采用手动控制。数据的传输方式分为单工、半双工、全双工和多工工作方式;串行通信有两种形式,异步和同步通信。介绍了串行串行口控制寄存器,电源管理寄存器PCON,中断允许寄存器IE,还介绍了数码显示管的工作方式、组成,共阳极和共阴极数码显示管的电路组成,有动态和静态显示两种方式,说明了不同显示方法与单片机的连接。再后来还介绍了硬件的焊接过程,及在焊接时遇到的问题和应该注意的方面。硬件焊接好后的检查电路、不装芯片上电检查及上电装芯片检查。软件部分:在了解电路设计原理后,根据原理和目的画出电路流程图,列出数码显示的断码表,计算波特率,设置串行口,在与接受机设置相同的通信协议的基础上编写显示和发射程序。编写完程序还要进行编译,这就必须会使用编译软件。介绍了编译软件的使用和使用过程中遇到的问题,及在编译后烧入芯片使用的软件PLDA,后来的加电调试,及遇到的问题,在没问题后与接受机连接,发射数据,直到对方准确接收到。在软件调试过程中将详细介绍调试遇到的问题,例如:通信协议是否相同,数码管是否与芯片连接对应,计数器是否开始计数等。
上传时间: 2013-10-19
上传用户:uuuuuuu
51单片机C语言编程手册这是一本关于Intel 80C51 以及广大的51 系列单片机的书这本书介绍给读者一些新的技术使你的8051 工程和开发过程变得简单请注意这本书的目的可不是教你各种8051 嵌入式系统的解决方法为使问题讨论更加清晰在适当的地方给出了程序代码我们以讨论项目的方法来说明每章碰到的问题所有的代码都可在附带的光盘上找到你必须熟系C 和8051 汇编因为本书不是一本C 和汇编的指导书你可以买到不少关于ANSI C 的书最佳选择当然是Intel的数据书可从你的芯片供应商处免费索取和随编译工具附送的手册附送光盘中有我为这本书编写和收集的程序这些程序已经通过测试这并不意味着你可以随时把这些程序加到你的应用系统或工程中有些地方必须首先经过修改才能结合到你的程序中这本书将教你充分使用你的工具如果你只有8051 的汇编程序你也可以学习该书和使用这些例子但是你必须把C 语言的程序装入你的汇编程序中这对懂得C 语言和8051汇编程序指令的人来说并不是一件困难的事如果你有C 编译器的话那恭喜你使用C 语言进行开发是一个好的决定你会发现使用C 进行开发将使你的工程开发和维护的时间大大减少如果你已经拥有Keil C51 那你已经选择了一个非常好的开发工具我发现Keil 软件包能够提供最好的支持本书支持Keil C 的扩展如果你有其它的开发工具像Archimedes 和Avocet 这本书也能很好地为你服务但你必须根据你所用的开发工具改变一些Keil 的特殊指令在书的一些地方有硬件图实例程序在这些硬件上运行这些图绘制地不是很详细主要是方框图但足以使读者明白软件和硬件之间的接口读者应该把这本书看成工具书而不是用来学习各种系统设计通过本书你可以了解给定一定的硬件和软件设计之后8051 的各种性能希望你能从本书中获取灵感并有助于你的设计使你豁然开朗当然我希望你也能够从本书中学到有用的知识使之能够提升你的设计
上传时间: 2013-11-01
上传用户:cjh1129
Keil C硬件编程指南 这是一本关于Intel 80C51 以及广大的51 系列单片机的书这本书介绍给读者一些新的技术使你的8051 工程和开发过程变得简单请注意这本书的目的可不是教你各种8051 嵌入式系统的解决方法为使问题讨论更加清晰在适当的地方给出了程序代码我们以讨论项目的方法来说明每章碰到的问题所有的代码都可在附带的光盘上找到.
上传时间: 2013-11-01
上传用户:cylnpy
keil c51语言使用技巧及实战第一章 介绍这是一本关于Intel 80C51 以及广大的51 系列单片机的书这本书介绍给读者一些新的技术使你的8051 工程和开发过程变得简单请注意这本书的目的可不是教你各种8051 嵌入式系统的解决方法为使问题讨论更加清晰在适当的地方给出了程序代码我们以讨论项目的方法来说明每章碰到的问题所有的代码都可在附带的光盘上找到你必须熟系C 和8051 汇编因为本书不是一本C 和汇编的指导书你可以买到不少关于ANSI C 的书最佳选择当然是Intel的数据书可从你的芯片供应商处免费索取和随编译工具附送的手册附送光盘中有我为这本书编写和收集的程序这些程序已经通过测试这并不意味着你可以随时把这些程序加到你的应用系统或工程中有些地方必须首先经过修改才能结合到你的程序中这本书将教你充分使用你的工具如果你只有8051 的汇编程序你也可以学习该书和使用这些例子但是你必须把C 语言的程序装入你的汇编程序中这对懂得C 语言和8051汇编程序指令的人来说并不是一件困难的事如果你有C 编译器的话那恭喜你使用C 语言进行开发是一个好的决定你会发现使用C 进行开发将使你的工程开发和维护的时间大大减少如果你已经拥有Keil C51 那你已经选择了一个非常好的开发工具我发现Keil 软件包能够提供最好的支持本书支持Keil C 的扩展如果你有其它的开发工具像Archimedes 和Avocet 这本书也能很好地为你服务但你必须根据你所用的开发工具改变一些Keil 的特殊指令在书的一些地方有硬件图实例程序在这些硬件上运行这些图绘制地不是很详细主要是方框图但足以使读者明白软件和硬件之间的接口读者应该把这本书看成工具书而不是用来学习各种系统设计通过.
上传时间: 2013-11-03
上传用户:hfnishi
at91rm9200启动过程教程 系统上电,检测BMS,选择系统的启动方式,如果BMS为高电平,则系统从片内ROM启动。AT91RM9200的ROM上电后被映射到了0x0和0x100000处,在这两个地址处都可以访问到ROM。由于9200的ROM中固化了一个BOOTLOAER程序。所以PC从0X0处开始执行这个BOOTLOAER(准确的说应该是一级BOOTLOADER)。这个BOOTLOER依次完成以下步骤: 1、PLL SETUP,设置PLLB产生48M时钟频率提供给USB DEVICE。同时DEBUG USART也被初始化为48M的时钟频率; 2、相应模式下的堆栈设置; 3、检测主时钟源(Main oscillator); 4、中断控制器(AIC)的设置; 5、C 变量的初始化; 6、跳到主函数。 完成以上步骤后,我们可以认为BOOT过程结束,接下来的就是LOADER的过程,或者也可以认为是装载二级BOOTLOER。AT91RM9200按照DATAFLASH、EEPROM、连接在外部总线上的8位并行FLASH的顺序依次来找合法的BOOT程序。所谓合法的指的是在这些存储设备的开始地址处连续的存放的32个字节,也就是8条指令必须是跳转指令或者装载PC的指令,其实这样规定就是把这8条指令当作是异常向量表来处理。必须注意的是第6条指令要包含将要装载的映像的大小。关于如何计算和写这条指令可以参考用户手册。一旦合法的映像找到之后,则BOOT程序会把找到的映像搬到SRAM中去,所以映像的大小是非常有限的,不能超过16K-3K的大小。当BOOT程序完成了把合法的映像搬到SRAM的任务以后,接下来就进行存储器的REMAP,经过REMAP之后,SRAM从映设前的0X200000地址处被映设到了0X0地址并且程序从0X0处开始执行。而ROM这时只能在0X100000这个地址处看到了。至此9200就算完成了一种形式的启动过程。如果BOOT程序在以上所列的几种存储设备中找到合法的映像,则自动初始化DEBUG USART口和USB DEVICE口以准备从外部载入映像。对DEBUG口的初始化包括设置参数115200 8 N 1以及运行XMODEM协议。对USB DEVICE进行初始化以及运行DFU协议。现在用户可以从外部(假定为PC平台)载入你的映像了。在PC平台下,以WIN2000为例,你可以用超级终端来完成这个功能,但是还是要注意你的映像的大小不能超过13K。一旦正确从外部装载了映像,接下来的过程就是和前面一样重映设然后执行映像了。我们上面讲了BMS为高电平,AT91RM9200选择从片内的ROM启动的一个过程。如果BMS为低电平,则AT91RM9200会从片外的FLASH启动,这时片外的FLASH的起始地址就是0X0了,接下来的过程和片内启动的过程是一样的,只不过这时就需要自己写启动代码了,至于怎么写,大致的内容和ROM的BOOT差不多,不同的硬件设计可能有不一样的地方,但基本的都是一样的。由于片外FLASH可以设计的大,所以这里编写的BOOTLOADER可以一步到位,也就是说不用像片内启动可能需要BOOT好几级了,目前AT91RM9200上使用较多的bootloer是u-boot,这是一个开放源代码的软件,用户可以自由下载并根据自己的应用配置。总的说来,笔者以为AT91RM9200的启动过程比较简单,ATMEL的服务也不错,不但提供了片内启动的功能,还提供了UBOOT可供下载。笔者写了一个BOOTLODER从片外的FLASHA启动,效果还可以。 uboot结构与使用uboot是一个庞大的公开源码的软件。他支持一些系列的arm体系,包含常见的外设的驱动,是一个功能强大的板极支持包。其代码可以 http://sourceforge.net/projects/u-boot下载 在9200上,为了启动uboot,还有两个boot软件包,分别是loader和boot。分别完成从sram和flash中的一级boot。其源码可以从atmel的官方网站下载。 我们知道,当9200系统上电后,如果bms为高电平,则系统从片内rom启动,这时rom中固化的boot程序初始化了debug口并向其发送'c',这时我们打开超级终端会看到ccccc...。这说明系统已经启动,同时xmodem协议已经启动,用户可以通过超级终端下载用户的bootloader。作为第一步,我们下载loader.bin.loader.bin将被下载到片内的sram中。这个loder完成的功能主要是初始化时钟,sdram和xmodem协议,为下载和启动uboot做准备。当下载了loader.bin后,超级终端会继续打印:ccccc....。这时我们就可以下在uboot了。uboot将被下载到sdram中的一个地址后并把pc指针调到此处开始执行uboot。接着我们就可以在终端上看到uboot的shell启动了,提示符uboot>,用户可以uboot>help 看到命令列表和大概的功能。uboot的命令包含了对内存、flash、网络、系统启动等一些命令。 如果系统上电时bms为低电平,则系统从片外的flash启动。为了从片外的flash启动uboot,我们必须把boot.bin放到0x0地址出,使得从flash启动后首先执行boot.bin,而要少些boot.bin,就要先完成上面我们讲的那些步骤,首先开始从片内rom启动uboot。然后再利用uboot的功能完成把boot.bin和uboot.gz烧写到flash中的目的,假如我们已经启动了uboot,可以这样操作: uboot>protect off all uboot>erase all uboot>loadb 20000000 uboot>cp.b 20000000 10000000 5fff uboot>loadb 21000000 uboot>cp.b 210000000 10010000 ffff 然后系统复位,就可以看到系统先启动boot,然后解压缩uboot.gz,然后启动uboot。注意,这里uboot必须压缩成.gz文件,否则会出错。 怎么编译这三个源码包呢,首先要建立一个arm的交叉编译环境,关于如何建立,此处不予说明。建立好了以后,分别解压源码包,然后修改Makefile中的编译器项目,正确填写你的编译器的所在路径。 对loader和boot,直接make。对uboot,第一步:make_at91rm9200dk,第二步:make。这样就会在当前目录下分别生成*.bin文件,对于uboot.bin,我们还要压缩成.gz文件。 也许有的人对loader和boot搞不清楚为什么要两个,有什么区别吗?首先有区别,boot主要完成从flash中启动uboot的功能,他要对uboot的压缩文件进行解压,除此之外,他和loader并无大的区别,你可以把boot理解为在loader的基础上加入了解压缩.gz的功能而已。所以这两个并无多大的本质不同,只是他们的使命不同而已。 特别说名的是这三个软件包都是开放源码的,所以用户可以根据自己的系统的情况修改和配置以及裁减,打造属于自己系统的bootloder。
上传时间: 2013-10-27
上传用户:wsf950131
单片机入门基础知识大全免费下载 单片机第八课(寻址方式与指令系统) 通过前面的学习,我们已经了解了单片机内部的结构,并且也已经知道,要控制单片机,让它为我们干学,要用指令,我们已学了几条指令,但很零散,从现在开始,我们将要系统地学习8051的指令部份。 一、概述 1、指令的格式 我们已知,要让计算机做事,就得给计算机以指令,并且我们已知,计算机很“笨”,只能懂得数字,如前面我们写进机器的75H,90H,00H等等,所以指令的第一种格式就是机器码格式,也说是数字的形式。但这种形式实在是为难我们人了,太难记了,于是有另一种格式,助记符格式,如MOV P1,#0FFH,这样就好记了。 这两种格式之间的关系呢,我们不难理解,本质上它们完全等价,只是形式不一样而已。 2、汇编 我们写指令使用汇编格式,而计算机只懂机器码格式,所以要将我们写的汇编格式的指令转换为机器码格式,这种转换有两种方法:手工汇编和机器汇编。手工汇编实际上就是查表,因为这两种格式纯粹是格式不同,所以是一一对应的,查一张表格就行了。不过手工查表总是嫌麻烦,所以就有了计算机软件,用计算机软件来替代手工查表,这就是机器汇编。 二、寻址 让我们先来复习一下我们学过的一些指令:MOV P1,#0FFH,MOV R7,#0FFH这些指令都是将一些数据送到相应的位置中去,为什么要送数据呢?第一个因为送入的数可以让灯全灭掉,第二个是为了要实现延时,从这里我们可以看出来,在用单片机的编程语言编程时,经常要用到数据的传递,事实上数据传递是单片机编程时的一项重要工作,一共有28条指令(单片机共111条指令)。下面我们就从数据传递类指令开始吧。 分析一下MOV P1,#0FFH这条指令,我们不难得出结论,第一个词MOV是命令动词,也就是决定做什么事情的,MOV是MOVE少写了一个E,所以就是“传递”,这就是指令,规定做什么事情,后面还有一些参数,分析一下,数据传递必须要有一个“源”也就是你要送什么数,必须要有一个“目的”,也就是你这个数要送到什么地方去,显然在上面那条指令中,要送的数(源)就是0FFH,而要送达的地方(目的地)就是P1这个寄存器。在数据传递类指令中,均将目的地写在指令的后面,而将源写在最后。 这条指令中,送给P1是这个数本身,换言之,做完这条指令后,我们可以明确地知道,P1中的值是0FFH,但是并不是任何时候都可以直接给出数本身的。例如,在我们前面给出的延时程序例是这样写的: MAIN: SETB P1.0 ;(1) LCALL DELAY ;(2) CLR P1.0 ;(3) LCALL DELAY ;(4) AJMP MAIN ;(5) ;以下子程序 DELAY: MOV R7,#250 ;(6) D1: MOV R6,#250 ;(7) D2: DJNZ R6,D2 ;(8) DJNZ R7,D1 ;(9) RET ;(10) END ;(11) 表1 MAIN: SETB P1.0 ;(1) MOV 30H,#255 LCALL DELAY ; CLR P1.0 ;(3) MOV 30H,#200 LCALL DELAY ;(4) AJMP MAIN ;(5) ;以下子程序 DELAY: MOV R7,30H ;(6) D1: MOV R6,#250 ;(7) D2: DJNZ R6,D2 ;(8) DJNZ R7,D1 ;(9) RET ;(10) END ;(11) 表2 这样一来,我每次调用延时程序延时的时间都是相同的(大致都是0.13S),如果我提出这样的要求:灯亮后延时时间为0.13S灯灭,灯灭后延时0.1秒灯亮,如此循环,这样的程序还能满足要求吗?不能,怎么办?我们可以把延时程序改成这样(见表2):调用则见表2中的主程,也就是先把一个数送入30H,在子程序中R7中的值并不固定,而是根据30H单元中传过来的数确定。这样就可以满足要求。 从这里我们可以得出结论,在数据传递中要找到被传递的数,很多时候,这个数并不能直接给出,需要变化,这就引出了一个概念:如何寻找操作数,我们把寻找操作数所在单元的地址称之为寻址。在这里我们直接使用数所在单元的地址找到了操作数,所以称这种方法为直接寻址。除了这种方法之外,还有一种,如果我们把数放在工作寄存器中,从工作寄存器中寻找数据,则称之为寄存器寻址。例:MOV A,R0就是将R0工作寄存器中的数据送到累加器A中去。提一个问题:我们知道,工作寄存器就是内存单元的一部份,如果我们选择工作寄存器组0,则R0就是RAM的00H单元,那么这样一来,MOV A,00H,和MOV A,R0不就没什么区别了吗?为什么要加以区分呢?的确,这两条指令执行的结果是完全相同的,都是将00H单元中的内容送到A中去,但是执行的过程不同,执行第一条指令需要2个周期,而第二条则只需要1个周期,第一条指令变成最终的目标码要两个字节(E5H 00H),而第二条则只要一个字节(E8h)就可以了。 这么斤斤计较!不就差了一个周期吗,如果是12M的晶振的话,也就1个微秒时间了,一个字节又能有多少? 不对,如果这条指令只执行一次,也许无所谓,但一条指令如果执行上1000次,就是1毫秒,如果要执行1000000万次,就是1S的误差,这就很可观了,单片机做的是实时控制的事,所以必须如此“斤斤计较”。字节数同样如此。 再来提一个问题,现在我们已知,寻找操作数可以通过直接给的方式(立即寻址)和直接给出数所在单元地址的方式(直接寻址),这就够了吗? 看这个问题,要求从30H单元开始,取20个数,分别送入A累加器。 就我们目前掌握的办法而言,要从30H单元取数,就用MOV A,30H,那么下一个数呢?是31H单元的,怎么取呢?还是只能用MOV A,31H,那么20个数,不是得20条指令才能写完吗?这里只有20个数,如果要送200个或2000个数,那岂不要写上200条或2000条命令?这未免太笨了吧。为什么会出现这样的状况?是因为我们只会把地址写在指令中,所以就没办法了,如果我们不是把地址直接写在指令中,而是把地址放在另外一个寄存器单元中,根据这个寄存器单元中的数值决定该到哪个单元中取数据,比如,当前这个寄存器中的值是30H,那么就到30H单元中去取,如果是31H就到31H单元中去取,就可以解决这个问题了。怎么个解决法呢?既然是看的寄存器中的值,那么我们就可以通过一定的方法让这里面的值发生变化,比如取完一个数后,将这个寄存器单元中的值加1,还是执行同一条指令,可是取数的对象却不一样了,不是吗。通过例子来说明吧。 MOV R7,#20 MOV R0,#30H LOOP:MOV A,@R0 INC R0 DJNZ R7,LOOP 这个例子中大部份指令我们是能看懂的,第一句,是将立即数20送到R7中,执行完后R7中的值应当是20。第二句是将立即数30H送入R0工作寄存器中,所以执行完后,R0单元中的值是30H,第三句,这是看一下R0单元中是什么值,把这个值作为地址,取这个地址单元的内容送入A中,此时,执行这条指令的结果就相当于MOV A,30H。第四句,没学过,就是把R0中的值加1,因此执行完后,R0中的值就是31H,第五句,学过,将R7中的值减1,看是否等于0,不等于0,则转到标号LOOP处继续执行,因此,执行完这句后,将转去执行MOV A,@R0这句话,此时相当于执行了MOV A,31H(因为此时的R0中的值已是31H了),如此,直到R7中的值逐次相减等于0,也就是循环20次为止,就实现了我们的要求:从30H单元开始将20个数据送入A中。 这也是一种寻找数据的方法,由于数据是间接地被找到的,所以就称之为间址寻址。注意,在间址寻址中,只能用R0或R1存放等寻找的数据。 二、指令 数据传递类指令 1) 以累加器为目的操作数的指令 MOV A,Rn MOV A,direct MOV A,@Ri MOV A,#data 第一条指令中,Rn代表的是R0-R7。第二条指令中,direct就是指的直接地址,而第三条指令中,就是我们刚才讲过的。第四条指令是将立即数data送到A中。 下面我们通过一些例子加以说明: MOV A,R1 ;将工作寄存器R1中的值送入A,R1中的值保持不变。 MOV A,30H ;将内存30H单元中的值送入A,30H单元中的值保持不变。 MOV A,@R1 ;先看R1中是什么值,把这个值作为地址,并将这个地址单元中的值送入A中。如执行命令前R1中的值为20H,则是将20H单元中的值送入A中。 MOV A,#34H ;将立即数34H送入A中,执行完本条指令后,A中的值是34H。 2)以寄存器Rn为目的操作的指令 MOV Rn,A MOV Rn,direct MOV Rn,#data 这组指令功能是把源地址单元中的内容送入工作寄存器,源操作数不变。
上传时间: 2013-10-13
上传用户:3294322651