上下文无关文法(Context-Free Grammar, CFG)是一个4元组G=(V, T, S, P),其中,V和T是不相交的有限集,S∈V,P是一组有限的产生式规则集,形如A→α,其中A∈V,且α∈(V∪T)*。V的元素称为非终结符,T的元素称为终结符,S是一个特殊的非终结符,称为文法开始符。 设G=(V, T, S, P)是一个CFG,则G产生的语言是所有可由G产生的字符串组成的集合,即L(G)={x∈T* | Sx}。一个语言L是上下文无关语言(Context-Free Language, CFL),当且仅当存在一个CFG G,使得L=L(G)。 *⇒ 例如,设文法G:S→AB A→aA|a B→bB|b 则L(G)={a^nb^m | n,m>=1} 其中非终结符都是大写字母,开始符都是S,终结符都是小写字母。
标签: Context-Free Grammar CFG
上传时间: 2013-12-10
上传用户:gaojiao1999
一:需求分析 1. 问题描述 魔王总是使用自己的一种非常精练而抽象的语言讲话,没人能听懂,但他的语言是可逐步解释成人能听懂的语言,因为他的语言是由以下两种形式的规则由人的语言逐步抽象上去的: ----------------------------------------------------------- (1) a---> (B1)(B2)....(Bm) (2)[(op1)(p2)...(pn)]---->[o(pn)][o(p(n-1))].....[o(p1)o] ----------------------------------------------------------- 在这两种形式中,从左到右均表示解释.试写一个魔王语言的解释系统,把 他的话解释成人能听得懂的话. 2. 基本要求: 用下述两条具体规则和上述规则形式(2)实现.设大写字母表示魔王语言的词汇 小写字母表示人的语言的词汇 希腊字母表示可以用大写字母或小写字母代换的变量.魔王语言可含人的词汇. (1) B --> tAdA (2) A --> sae 3. 测试数据: B(ehnxgz)B 解释成 tsaedsaeezegexenehetsaedsae若将小写字母与汉字建立下表所示的对应关系,则魔王说的话是:"天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅". | t | d | s | a | e | z | g | x | n | h | | 天 | 地 | 上 | 一只| 鹅 | 追 | 赶 | 下 | 蛋 | 恨 |
上传时间: 2014-12-02
上传用户:jkhjkh1982
将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)
上传时间: 2013-12-19
上传用户:aix008
本代码为编码开关代码,编码开关也就是数字音响中的 360度旋转的数字音量以及显示器上用的(单键飞梭开 关)等类似鼠标滚轮的手动计数输入设备。 我使用的编码开关为5个引脚的,其中2个引脚为按下 转轮开关(也就相当于鼠标中键)。另外3个引脚用来 检测旋转方向以及旋转步数的检测端。引脚分别为a,b,c b接地a,c分别接到P2.0和P2.1口并分别接两个10K上拉 电阻,并且a,c需要分别对地接一个104的电容,否则 因为编码开关的触点抖动会引起轻微误动作。本程序不 使用定时器,不占用中断,不使用延时代码,并对每个 细分步数进行判断,避免一切误动作,性能超级稳定。 我使用的编码器是APLS的EC11B可以参照附件的时序图 编码器控制流水灯最能说明问题,下面是以一段流水 灯来演示。
上传时间: 2017-07-03
上传用户:gaojiao1999
【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。
标签: 点阵
上传时间: 2014-06-21
上传用户:llandlu
实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); }
上传时间: 2016-06-27
上传用户:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
标签: 道理特分解法
上传时间: 2018-05-20
上传用户:Aa123456789
The book you’re holding, physically or electronically, is the result of a very interesting, challenging but also rewarding research project. The research was carried out in different contexts and cooperations but it was centered around the following question: how can we make the RF transmitters of our modern com- munication systems (WiFi, GSM, LTE, and so on) more flexible and more efficient at the same time.
标签: Continuous-Time Front-Ends Digital
上传时间: 2020-05-27
上传用户:shancjb
Mobile radio networks have risen in prominence over the last few years, primarily by the rise in popularity of cellular phones. It is important to recognise however that mobile radio technology fulfils a far wider range of applications that meet the demands of the modern world. These include the networks that allow police and emergency services to serve the public, military networks for operations and humanitarian support, and the mobile technol- ogies that are vital to the safety of aircraft.
标签: Network Mobile Design Radio
上传时间: 2020-05-30
上传用户:shancjb
Digital radios have undergone an astonishing evolution in the last century. Born as a set of simple and power-hungry electrical and electromechanical devices for low data rate transmission of telegraph data in the Marconi age, they have transformed, thanks to substantial advances in electronic technology, into a set of small, reliable and sophisticated integrated devices supporting broadband multimedia communications. This, however, would not have been possible unless significant progress had been made in recent decades in the field of signal processing algorithms for baseband and passband signals. In fact, the core of any modern digital radio consists of a set of algorithms running over programmable electronic hardware. This book stems from the research and teaching activities of its co-authors in the field of algorithmic techniques for wireless communications. A huge body of technical literature has accumulated in the last four decades in this area, and an extensive coverage of all its important aspects in a single textbook is impossible. For this reason, we have selected a few important topics and, for ease of reading, organized them into two parts.
标签: Communications Algorithmic Techniques Wireless
上传时间: 2020-06-01
上传用户:shancjb