本文主要通过介绍PLC通讯的意义和三菱FX系列PLC的四种通讯方式,并重点介绍FX系列PLC与计算机无协议通讯,主要从无协议通讯的硬件、配线、数据寄存器设置、PLC与计算机无协议通讯的指令用法、PLC程序编写和计算机VB程序的编写来说明无协议通讯的过程和一般方法。 My dissertation introduces the significance of PLC communications and the four means of communication of Mitsubishi FX’s PLC, And highlights the no protocol communications of FX series PLC and computer, no protocol communications hardware, wiring, Register data set, and the usage of command about no protocol communications, How to write PLC program and computer VB program to illustrate the process of no protocol communications and general method.
上传时间: 2014-11-29
上传用户:Jerry_Chow
The LPC2292/2294 microcontrollers are based on a 16/32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, together with 256 kB of embedded high-speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30 pct with minimal performance penalty. With their 144-pin package, low power consumption, various 32-bit timers, 8-channel 10-bit ADC, 2/4 (LPC2294) advanced CAN channels, PWM channels and up to nine external interrupt pins these microcontrollers are particularly suitable for automotive and industrial control applications as well as medical systems and fault-tolerant maintenance buses. The number of available fast GPIOs ranges from 76 (with external memory) through 112 (single-chip). With a wide range of additional serial communications interfaces, they are also suited for communication gateways and protocol converters as well as many other general-purpose applications. Remark: Throughout the data sheet, the term LPC2292/2294 will apply to devices with and without the /00 or /01 suffix. The suffixes /00 and /01 will be used to differentiate from other devices only when necessary.
上传时间: 2014-12-30
上传用户:aysyzxzm
Abstract: The process of designing a radio system can be complex and often involves many project tradeoffs. Witha little insight, balancing these various characteristics can make the job of designing a radio system easier. Thistutorial explores these tradeoffs and provides details to consider for various radio applications. With a focus on theindustrial, scientific, medical (ISM) bands, the subjects of frequency selection, one-way versus two-way systems,modulation techniques, cost, antenna options, power-supply influences, effects on range, and protocol selectionare explored.
标签: 无线
上传时间: 2013-12-13
上传用户:eastgan
在研究传统家用燃气报警器的基础上,以ZigBee协议为平台,构建mesh网状网络实现网络化的智能语音报警系统。由于传感器本身的温度和实际环境温度的影响,传感器标定后采用软件补偿方法。为了减少系统费用,前端节点采用半功能节点设备,路由器和协调器采用全功能节点设备,构建mesh网络所形成的家庭内部报警系统,通过通用的电话接口连接到外部的公用电话网络,启动语音模块进行报警。实验结果表明,在2.4 GHz频率下传输,有墙等障碍物的情况下,节点的传输距离大约为35 m,能够满足家庭需要,且系统工作稳定,但在功耗方面仍需进一步改善。 Abstract: On the basis of studying traditional household gas alarm system, this paper proposed the platform for the ZigBee protocol,and constructed mesh network to achieve network-based intelligent voice alarm system. Because of the sensor temperature and the actual environment temperature, this system design used software compensation after calibrating sensor. In order to reduce system cost, semi-functional node devices were used as front-end node, however, full-function devices were used as routers and coordinator,constructed alarm system within the family by building mesh network,connected to the external public telephone network through the common telephone interface, started the voice alarm module. The results indicate that nodes transmit about 35m in the distance in case of walls and other obstacles by 2.4GHz frequency transmission, this is able to meet family needs and work steadily, but still needs further improvement in power consumption.
上传时间: 2013-10-30
上传用户:swaylong
同步技术是跳频通信系统的关键技术之一,尤其是在快速跳频通信系统中,常规跳频通信通过同步字头携带相关码的方法来实现同步,但对于快跳频来说,由于是一跳或者多跳传输一个调制符号,难以携带相关码。对此引入双跳频图案方法,提出了一种适用于快速跳频通信系统的同步方案。采用短码携带同步信息,克服了快速跳频难以携带相关码的困难。分析了同步性能,仿真结果表明该方案同步时间短、虚警概率低、捕获概率高,同步性能可靠。 Abstract: Synchronization is one of the key techniques to frequency-hopping communication system, especially in the fast frequency hopping communication system. In conventional frequency hopping communication systems, synchronization can be achieved by synchronization-head which can be used to carry the synchronization information, but for the fast frequency hopping, Because modulation symbol is transmitted by per hop or multi-hop, it is difficult to carry the correlation code. For the limitation of fast frequency hopping in carrying correlation code, a fast frequency-hopping synchronization scheme with two hopping patterns is proposed. The synchronization information is carried by short code, which overcomes the difficulty of correlation code transmission in fast frequency-hopping. The performance of the scheme is analyzed, and simulation results show that the scheme has the advantages of shorter synchronization time, lower probability of false alarm, higher probability of capture and more reliable of synchronization.
上传时间: 2013-11-23
上传用户:mpquest
The NXP LPC315x combine an 180 MHz ARM926EJ-S CPU core, High-speed USB 2.0OTG, 192 KB SRAM, NAND flash controller, flexible external bus interface, an integratedaudio codec, Li-ion charger, Real-Time Clock (RTC), and a myriad of serial and parallelinterfaces in a single chip targeted at consumer, industrial, medical, and communicationmarkets. To optimize system power consumption, the LPC315x have multiple powerdomains and a very flexible Clock Generation Unit (CGU) that provides dynamic clockgating and scaling.The LPC315x is implemented as multi-chip module with two side-by-side dies, one fordigital fuctions and one for analog functions, which include a Power Supply Unit (PSU),audio codec, RTC, and Li-ion battery charger.
上传时间: 2014-01-17
上传用户:Altman
Today in many applications such as network switches, routers, multi-computers,and processor-memory interfaces, the ability to integrate hundreds of multi-gigabit I/Os is desired to make better use of the rapidly advancing IC technology.
上传时间: 2013-10-30
上传用户:ysjing
ARM通讯 H-JTAG 是一款简单易用的的调试代理软件,功能和流行的MULTI-ICE 类似。H-JTAG 包括两个工具软件:H-JTAG SERVER 和H-FLASHER。其中,H-JTAG SERVER 实现调试代理的功能,而H-FLASHER则实现了FLASH 烧写的功能。H-JTAG 的基本结构如下图1-1所示。 H-JTAG支持所有基于ARM7 和ARM9的芯片的调试,并且支持大多数主流的ARM调试软件,如ADS、RVDS、IAR 和KEIL。通过灵活的接口配置,H-JTAG 可以支持WIGGLER,SDT-JTAG 和用户自定义的各种JTAG 调试小板。同时,附带的H-FLASHER 烧写软件还支持常用片内片外FLASH 的烧写。使用H-JTAG,用户能够方便的搭建一个简单易用的ARM 调试开发平台。H-JTAG 的功能和特定总结如下: 1. 支持 RDI 1.5.0 以及 1.5.1; 2. 支持所有ARM7 以及 ARM9 芯片; 3. 支持 THUMB 以及ARM 指令; 4. 支持 LITTLE-ENDIAN 以及 BIG-ENDIAN; 5. 支持 SEMIHOSTING; 6. 支持 WIGGLER, SDT-JTAG和用户自定义JTAG调试板; 7. 支持 WINDOWS 9.X/NT/2000/XP; 8.支持常用FLASH 芯片的编程烧写; 9. 支持LPC2000 和AT91SAM 片内FLASH 的自动下载;
上传时间: 2014-12-01
上传用户:Miyuki
中文版详情浏览:http://www.elecfans.com/emb/fpga/20130715324029.html Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications. The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation. Some of the UltraScale architecture breakthroughs include: • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50% • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets • Greatly enhanced DSP and packet handling The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
标签: UltraScale Xilinx 架构
上传时间: 2013-11-21
上传用户:wxqman
Today’s digital systems combine a myriad of chips with different voltage configurations.Designers must interface 2.5V processors with 3.3V memories—both RAM and ROM—as wellas 5V buses and multiple peripheral chips. Each chip has specific power supply needs. CPLDsare ideal for handling the multi-voltage interfacing, but do require forethought to ensure correctoperation.
上传时间: 2013-11-10
上传用户:yy_cn