用matlab编写的k-dtree,加快搜索,在点云拼合中应用广泛。
上传时间: 2013-12-19
上传用户:z754970244
:以matlab工具箱的形式给出了静态及动态未知环境下移动机器人地图构建的仿真研究平 台。通过分析polaroid6500声纳、电子罗盘、编码器等传感器的工作原理建立了参数可调的传感器 模型。这些传感器为机器人提供位姿及环境信息。在分析已有基于hough变换的线段提取算法的基 础上提出了抑止。杂线段。现象的CIHT[Clus~r Inhibiting Hough Transform]算法.采用cIHT 对声蚋信息作环境特征提取,便于开展基于环境特征的未知环境地图构建算法方面的研究工作。
上传时间: 2017-03-26
上传用户:xyipie
这是针对一维K-means算法的实现,如果想针对多维的k-means算法流程一样,你只要设计一个多维数据点的数据结构就可以了
上传时间: 2013-12-27
上传用户:Thuan
MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C++和FORTRAN)编写的程序。
标签: 图形处理、软件仿真
上传时间: 2015-05-06
上传用户:Joker_chong
关于matlab数学建模的一些算法和例子分析
上传时间: 2015-12-10
上传用户:LDZHJG
matlab的智能算法之遗传算法的实例讲解,详细介绍了GA的编程流程和方法,易于掌握。
上传时间: 2016-04-10
上传用户:zhangheng12312321
详细的介绍了matlab算法,以及实例,以及源码
上传时间: 2019-11-24
上传用户:fengshou000
%========================开始提取加噪信号的各类特征值================================ for n=1:1:50; m=n*Ns; x=(n-1)*Ns; for i=x+1:m; %提取加噪信号'signal_with_noise=y+noise'的前256个元素,抽取50次 y0(i)=signal_with_noise(i); end Y=fft(y0); %对调制信号进行快速傅里叶算法(离散) y1=hilbert(y0) ; %调制信号实部的解析式 factor=0; %开始求零中心归一化瞬时幅度谱密度的最大值gamma_max for i=x+1:m; factor=factor+y0(i); end ms=factor/(m-x); an_i=y0./ms; acn_i=an_i-1; end gamma_max=max(fft(acn_i.*acn_i))/Ns
上传时间: 2020-04-07
上传用户:如拷贝般复制
%========================开始提取加噪信号的各类特征值================================ for n=1:1:50; m=n*Ns; x=(n-1)*Ns; for i=x+1:m; %提取加噪信号'signal_with_noise=y+noise'的前256个元素,抽取50次 y0(i)=signal_with_noise(i); end Y=fft(y0); %对调制信号进行快速傅里叶算法(离散) y1=hilbert(y0) ; %调制信号实部的解析式 factor=0; %开始求零中心归一化瞬时幅度谱密度的最大值gamma_max for i=x+1:m; factor=factor+y0(i); end ms=factor/(m-x); an_i=y0./ms; acn_i=an_i-1; end gamma_max=max(fft(acn_i.*acn_i))/Ns
上传时间: 2020-04-07
上传用户:如拷贝般复制
人口老龄化是世界各国正在面对的一个普遍问题。随着我国老龄化程度的持续加剧,对于老年人群体的医疗资源投入会不断提高。而与此同时,跌倒已经成为老年人日常生活中最为常见的危险行为活动。所以,跌倒检测系统的研究和应用对降低老年人受到的身心伤害和医疗成本具有显著的意义。目前解决老年人跌倒检测的方案仍存在许多不足。其中,基于计算机视觉的跌倒检测技术在无干扰的场景下检测较为有效,但其易受环境变化(如背景光线影响、人遮挡问题等)影响。此外,基于可穿戴计算的跌倒检测技术受限于算法稳定性和识别准确率,系统的灵敏度和特异性难以同时得到保证。针对上述问题本文提出一种融合计算机视觉和可穿戴计算数据的跌倒检测新的方法。首先,设计并开发了集成三轴加速度计、三轴陀螺仪和蓝牙的活动感知模块,实现实时采集、传输人体活动数据:其次,使用深度学习算法从摄像头采集的图像数据提取人体姿态特征数据:最后,对采集的人体活动数据和姿态数据进行规范化和时序化处理,设计了两个深度学习网络分别对数据进行特征提取,并将两特征进行特征层数据融合,在此基础上构建神经网络对融合数据进行活动本文搭建了实验平台并进行了算法测试,其中,本文跌倒检测算法针对离线测试数据的准确率为992%,平均敏感度为995%、平均特异性为99.8%:针对在线数据系统测试准确率为98.9%、平均敏感度为99.2%、平均特异性为99.5%实验结果证明了利用计算机视觉和可穿戴计算数据融合的跌倒检测具有较高的准确率和鲁棒性。
上传时间: 2022-03-14
上传用户:bluedrops