The package contains a Reed-Solomon coding and decoding program, derived partly from Phil Karn/Robert Morelos-Zaragoza "new_rs_erasures.c". In particular the Berlekamp-Massey algorithm has not been modified. New features compared to "new_rs_erasures.c" are: - fully parameterized: code parameters (n,k,m) can be selected via command line options. - decoding optional by Euclid or Belekamp-Massey algorithm - efficient support of shortened codes - extensive verbose levels for hardware verification
标签: Reed-Solomon contains decoding package
上传时间: 2013-12-11
上传用户:shinesyh
Description: The programm generates encoder for CRC-, BCH- and RS-Codes. The command line options of the tools can be displayed with -h !
标签: Description The generates RS-Codes
上传时间: 2016-06-25
上传用户:ikemada
K-S检验产生的数据是否服从指数分布。此方法可以类推其他任何分布形式的检验。
上传时间: 2014-01-02
上传用户:youlongjian0
k均值算法matlab实现,模式识别中常用
上传时间: 2016-06-27
上传用户:fandeshun
Addfilter is a command-line application which adds and removes filter drivers for a given drive or volume. It is intended to demonstrate how to insert a filter driver into the driver stack of a device. The sample illustrates how to do this by using the SetupDi APIs. The sample works on the x86 platform. It has only been tested in a 32-bit environment. Since Addfilter is not a driver, it does not deal with Plug and Play or Power Management. No INF file is needed to install this application.
标签: command-line application Addfilter drivers
上传时间: 2016-06-28
上传用户:源码3
Addfilter is a command-line application which adds and removes filter drivers for a given drive or volume.
标签: command-line application Addfilter drivers
上传时间: 2016-07-01
上传用户:王楚楚
Determination of number of clusters in K-Means Clustering and Application in color image segmenta
标签: Determination Application Clustering clusters
上传时间: 2013-12-05
上传用户:zsjzc
求第K个最小值 比2分法还快的算法 只要比N-1次就行
上传时间: 2016-07-01
上传用户:cooran
寻找k个聚类中心的算法,也就是对k-means算法初始化进行改进的一种算法
上传时间: 2016-07-02
上传用户:z754970244
K-MEANS算法 输入:聚类个数k,以及包含 n个数据对象的数据库。 输出:满足方差最小标准的k个聚类。 处理流程: (1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2) 循环(3)到(4)直到每个聚类不再发生变化为止 (3) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (4) 重新计算每个(有变化)聚类的均值(中心对象)
上传时间: 2013-12-20
上传用户:chenjjer